25,819 research outputs found

    Charge order in Magnetite. An LDA+UU study

    Full text link
    The electronic structure of the monoclinic structure of Fe3_3O4_4 is studied using both the local density approximation (LDA) and the LDA+UU. The LDA gives only a small charge disproportionation, thus excluding that the structural distortion should be sufficient to give a charge order. The LDA+UU results in a charge disproportion along the c-axis in good agreement with the experiment. We also show how the effective UU can be calculated within the augmented plane wave methods

    Quantum Charged Spinning Particles in a Strong Magnetic Field (a Quantal Guiding Center Theory)

    Get PDF
    A quantal guiding center theory allowing to systematically study the separation of the different time scale behaviours of a quantum charged spinning particle moving in an external inhomogeneous magnetic filed is presented. A suitable set of operators adapting to the canonical structure of the problem and generalizing the kinematical momenta and guiding center operators of a particle coupled to a homogenous magnetic filed is constructed. The Pauli Hamiltonian rewrites in this way as a power series in the magnetic length lB=c/eBl_B= \sqrt{\hbar c/eB} making the problem amenable to a perturbative analysis. The first two terms of the series are explicitly constructed. The effective adiabatic dynamics turns to be in coupling with a gauge filed and a scalar potential. The mechanism producing such magnetic-induced geometric-magnetism is investigated in some detail.Comment: LaTeX (epsfig macros), 27 pages, 2 figures include

    Digital adaptive flight controller development

    Get PDF
    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Two designs are described for an example aircraft. Each of these designs uses a weighted least squares procedure to identify parameters defining the dynamics of the aircraft. The two designs differ in the way in which control law parameters are determined. One uses the solution of an optimal linear regulator problem to determine these parameters while the other uses a procedure called single stage optimization. Extensive simulation results and analysis leading to the designs are presented

    Nodal domain distributions for quantum maps

    Full text link
    The statistics of the nodal lines and nodal domains of the eigenfunctions of quantum billiards have recently been observed to be fingerprints of the chaoticity of the underlying classical motion by Blum et al. (Phys. Rev. Lett., Vol. 88 (2002), 114101) and by Bogomolny and Schmit (Phys. Rev. Lett., Vol. 88 (2002), 114102). These statistics were shown to be computable from the random wave model of the eigenfunctions. We here study the analogous problem for chaotic maps whose phase space is the two-torus. We show that the distributions of the numbers of nodal points and nodal domains of the eigenvectors of the corresponding quantum maps can be computed straightforwardly and exactly using random matrix theory. We compare the predictions with the results of numerical computations involving quantum perturbed cat maps.Comment: 7 pages, 2 figures. Second version: minor correction

    Anomalous Hall effect in the Co-based Heusler compounds Co2_{2}FeSi and Co2_{2}FeAl

    Full text link
    The anomalous Hall effect (AHE) in the Heusler compounds Co2_{2}FeSi and Co2_{2}FeAl is studied in dependence of the annealing temperature to achieve a general comprehension of its origin. We have demonstrated that the crystal quality affected by annealing processes is a significant control parameter to tune the electrical resistivity ρxx\rho_{xx} as well as the anomalous Hall resistivity ρahe\rho_{ahe}. Analyzing the scaling behavior of ρahe\rho_{ahe} in terms of ρxx\rho_{xx} points to a temperature-dependent skew scattering as the dominant mechanism in both Heusler compounds

    Gravitational wave energy spectrum of a parabolic encounter

    Full text link
    We derive an analytic expression for the energy spectrum of gravitational waves from a parabolic Keplerian binary by taking the limit of the Peters and Matthews spectrum for eccentric orbits. This demonstrates that the location of the peak of the energy spectrum depends primarily on the orbital periapse rather than the eccentricity. We compare this weak-field result to strong-field calculations and find it is reasonably accurate (~10%) provided that the azimuthal and radial orbital frequencies do not differ by more than ~10%. For equatorial orbits in the Kerr spacetime, this corresponds to periapse radii of rp > 20M. These results can be used to model radiation bursts from compact objects on highly eccentric orbits about massive black holes in the local Universe, which could be detected by LISA.Comment: 5 pages, 3 figures. Minor changes to match published version; figure 1 corrected; references adde

    Quantum dots in graphene

    Full text link
    We suggest a way of confining quasiparticles by an external potential in a small region of a graphene strip. Transversal electron motion plays a crucial role in this confinement. Properties of thus obtained graphene quantum dots are investigated theoretically for different types of the boundary conditions at the edges of the strip. The (quasi)bound states exist in all systems considered. At the same time, the dependence of the conductance on the gate voltage carries an information about the shape of the edges.Comment: 4 pages, 3 figure

    High-Order Adiabatic Approximation for Non-Hermitian Quantum System and Complexization of Berry's Phase

    Full text link
    In this paper the evolution of a quantum system drived by a non-Hermitian Hamiltonian depending on slowly-changing parameters is studied by building an universal high-order adiabatic approximation(HOAA) method with Berry's phase ,which is valid for either the Hermitian or the non-Hermitian cases. This method can be regarded as a non-trivial generalization of the HOAA method for closed quantum system presented by this author before. In a general situation, the probabilities of adiabatic decay and non-adiabatic transitions are explicitly obtained for the evolution of the non-Hermitian quantum system. It is also shown that the non-Hermitian analog of the Berry's phase factor for the non-Hermitian case just enjoys the holonomy structure of the dual linear bundle over the parameter manifold. The non-Hermitian evolution of the generalized forced harmonic oscillator is discussed as an illustrative examples.Comment: ITP.SB-93-22,17 page

    Berry phase and de Haas - van Alphen effect in LaRhIn5_5

    Full text link
    We explain the experimental data on the magnetization of LaRhIn5LaRhIn_5 recently published by R. G. Goodrich et al. in Phys. Rev.Lett. {\bf 89}, 026401 (2002). We show that the magnetization of a small electron group associated with a band-contact line was detected in that paper. These data provide the first observation of the Berry phase of electrons in metals via the de Haas - van Alphen effect.Comment: 4 pages, 2 figure

    Pacman percolation: a model for enzyme gel degradation

    Full text link
    We study a model for the gel degradation by an enzyme, where the gel is schematized as a cubic lattice, and the enzyme as a random walker, that cuts the bonds over which it passes. The model undergoes a (reverse) percolation transition, which for low density of enzymes falls in a universality class different from random percolation. In particular we have measured a gel fraction critical exponent beta=1.0+-0.1, in excellent agreement with experiments made on the real system.Comment: 4 pages, 7 eps figure
    corecore