11,470 research outputs found

    Mechanisms of fragmentation of Al-W granular composites under dynamic loading

    Full text link
    Numerical simulations of Aluminum (Al) and Tungsten (W) granular composite rings under various dynamic loading conditions caused by explosive loading were examined. Three competing mechanisms of fragmentation were observed: a continuum level mechanism generating large macrocracks described by the Grady-Kipp fragmentation mechanism, a mesoscale mechanism generating voids and microcracks near the initially unbonded Al/W interfaces due to tensile strains, and a mesoscale jetting due to the development of large velocity gradients between the W particles and adjacent Al. These mesoscale mechanisms can be used to tailor the size of the fragments by selecting an appropriate initial mesostructure for a given loading condition.Comment: 10 pages, 3 figures, submitted to AP

    Three dimensional viscous analysis of a hypersonic inlet

    Get PDF
    The flow fields in supersonic/hypersonic inlets are currently being studied at NASA Lewis Research Center using 2- and 3-D full Navier-Stokes and Parabolized Navier-Stokes solvers. These tools have been used to analyze the flow through the McDonnell Douglas Option 2 inlet which has been tested at Calspan in support of the National Aerospace Plane Program. Comparisons between the computational and experimental results are presented. These comparisons lead to better overall understanding of the complex flows present in this class of inlets. The aspects of the flow field emphasized in this work are the 3-D effects, the transition from laminar to turbulent flow, and the strong nonuniformities generated within the inlet

    A universal ionization threshold for strongly driven Rydberg states

    Full text link
    We observe a universal ionization threshold for microwave driven one-electron Rydberg states of H, Li, Na, and Rb, in an {\em ab initio} numerical treatment without adjustable parameters. This sheds new light on old experimental data, and widens the scene for Anderson localization in light matter interaction.Comment: 4 pages, 1 figur

    Fluorides, orthodontics and demineralization: a systematic review

    Get PDF
    Objectives: To evaluate the effectiveness of fluoride in preventing white spot lesion (WSL) demineralization during orthodontic treatment and compare all modes of fluoride delivery. Data sources: The search strategy for the review was carried out according to the standard Cochrane systematic review methodology. The following databases were searched for RCTs or CCTs: Cochrane Clinical Trials Register, Cochrane Oral Health Group Specialized Trials Register, MEDLINE and EMBASE. Inclusion and exclusion criteria were applied when considering studies to be included. Authors of trials were contacted for further data. Data selection: The primary outcome of the review was the presence or absence of WSL by patient at the end of treatment. Secondary outcomes included any quantitative assessment of enamel mineral loss or lesion depth. Data extraction: Six reviewers independently, in duplicate, extracted data, including an assessment of the methodological quality of each trial. Data synthesis: Fifteen trials provided data for this review, although none fulfilled all the methodological quality assessment criteria. One study found that a daily NaF mouthrinse reduced the severity of demineralization surrounding an orthodontic appliance (lesion depth difference –70.0 µm; 95% CI –118.2 to –21.8 µm). One study found that use of a glass ionomer cement (GIC) for bracket bonding reduced the prevalence of WSL (Peto OR 0.35; 95% CI 0.15–0.84) compared with a composite resin. None of the studies fulfilled all of the methodological quality assessment criteria. Conclusions: There is some evidence that the use of a daily NaF mouthrinse or a GIC for bonding brackets might reduce the occurrence and severity of WSL during orthodontic treatment. More high quality, clinical research is required into the different modes of delivering fluoride to the orthodontic patient

    Kilohertz QPOs in Neutron Star Binaries modeled as Keplerian Oscillations in a Rotating Frame of Reference

    Get PDF
    Since the discovery of kHz quasi-periodic oscillations (QPO) in neutron star binaries, the difference between peak frequencies of two modes in the upper part of the spectrum, i.e. Delta (omega)=omega_h-omega_K has been studied extensively. The idea that the difference Delta(omega) is constant and (as a beat frequency) is related to the rotational frequency of the neutron star has been tested previously. The observed decrease of Delta(omega) when omega_h and omega_k increase has weakened the beat frequency interpretation. We put forward a different paradigm: a Keplerian oscillator under the influence of the Coriolis force. For such an oscillator, omega_h and the assumed Keplerian frequency omega_k hold an upper hybrid frequency relation: omega^2_h-omega^2_K=4*Omega^2, where Omega is the rotational frequency of the star's magnetosphere near the equatorial plane. For three sources (Sco X-1, 4U 1608-52 and 4U 1702-429), we demonstrate that the solid body rotation Omega=Omega_0=const. is a good first order approximation. Within the second order approximation, the slow variation of Omega as a function of omega_K reveals the structure of the magnetospheric differential rotation. For Sco X-1, the QPO have frequencies approximately 45 and 90 Hz which we interpret as the 1st and 2nd harmonics of the lower branch of the Keplerian oscillations for the rotator with vector Omega not aligned with the normal of the disk: omega_L/2 pi=(Omega/pi)(omega_K/omega_h)sin(delta) where delta is the angle between vector Omega and the vector normal to the disk.Comment: 13 pages, 3 figures, accepted for publications in ApJ Letter

    Ginzburg-Landau Theory for the Jaynes-Cummings-Hubbard Model

    Full text link
    We develop a Ginzburg-Landau theory for the Jaynes-Cummings-Hubbard model which effectively describes both static and dynamic properties of photons evolving in a cubic lattice of cavities, each filled with a two-level atom. To this end we calculate the effective action to first-order in the hopping parameter. Within a Landau description of a spatially and temporally constant order parameter we calculate the finite-temperature mean-field quantum phase boundary between a Mott insulating and a superfluid phase of polaritons. Furthermore, within the Ginzburg-Landau description of a spatio-temporal varying order parameter we determine the excitation spectra in both phases and, in particular, the sound velocity of light in the superfluid phase

    Calculating Farm Machinery Field Capacities

    Get PDF
    Calculating field capacities is just part of the overall concept of farm machinery management. Successful farm machinery management does not guarantee a profit, but machinery costs are a major expense and they must be monitored and managed. Therefore, the efficient use of farm machinery starts with determining working capacity in conjunction with the amount of work to be accomplished in a timely manner
    • …
    corecore