492 research outputs found
Entanglement without Dissipation: A Touchstone for an exact Comparison of Entanglement Measures
Entanglement, which is an essential characteristic of quantum mechanics, is
the key element in potential practical quantum information and quantum
communication systems. However, there are many open and fundamental questions
(relating to entanglement measures, sudden death, etc.) that require a deeper
understanding. Thus, we are motivated to investigate a simple but non-trivial
correlated two-body continuous variable system in the absence of a heat bath,
which facilitates an \underline{exact} measure of the entanglement at all
times. In particular, we find that the results obtained from all well-known
existing entanglement measures agree with each other but that, in practice,
some are more straightforward to use than others
Information and entropy in quantum Brownian motion: Thermodynamic entropy versus von Neumann entropy
We compare the thermodynamic entropy of a quantum Brownian oscillator derived
from the partition function of the subsystem with the von Neumann entropy of
its reduced density matrix. At low temperatures we find deviations between
these two entropies which are due to the fact that the Brownian particle and
its environment are entangled. We give an explanation for these findings and
point out that these deviations become important in cases where statements
about the information capacity of the subsystem are associated with
thermodynamic properties, as it is the case for the Landauer principle.Comment: 8 pages, 7 figure
Entropy of a Quantum Oscillator coupled to a Heat Bath and implications for Quantum Thermodynamics
The free energy of a quantum oscillator in an arbitrary heat bath at a
temperature T is given by a "remarkable formula" which involves only a single
integral. This leads to a corresponding simple result for the entropy. The low
temperature limit is examined in detail and we obtain explicit results both for
the case of an Ohmic heat bath and a radiation heat bath. More general heat
bath models are also examined. This enables us to determine the entropy at zero
temperature in order to check the third law of thermodynamics in the quantum
regimeComment: International Conference on "Frontiers of Quantum and Mesoscopic
Thermodynamics
Cosmological gravitino problem confronts electroweak physics
A generic feature of gauge-mediated supersymmetry breaking models is that the
gravitino is the lightest supersymmetric particle (LSP). In order not to
overclose the universe, the gravitino LSP should be light enough (~ 1 keV), or
appropriately heavy (~ 1 GeV). We study further constraints on the mass of the
gravitino imposed by electroweak experiments, i.e., muon g-2 measurements,
electroweak precision measurements, and direct searches for supersymmetric
particles at LEP2. We find that the heavy gravitino is strongly disfavored from
the lower mass bound on the next-to-LSP. The sufficiently light gravitino, on
the other hand, has rather sizable allowed regions in the model parameter
space.Comment: 11 pages, 8 figures, version to appear in PR
Dyson Pairs and Zero-Mass Black Holes
It has been argued by Dyson in the context of QED in flat spacetime that
perturbative expansions in powers of the electric charge e cannot be convergent
because if e is purely imaginary then the vacuum should be unstable to the
production of charged pairs. We investigate the spontaneous production of such
Dyson pairs in electrodynamics coupled to gravity. They are found to consist of
pairs of zero-rest mass black holes with regular horizons. The properties of
these zero rest mass black holes are discussed. We also consider ways in which
a dilaton may be included and the relevance of this to recent ideas in string
theory. We discuss accelerating solutions and find that, in certain
circumstances, the `no strut' condition may be satisfied giving a regular
solution describing a pair of zero rest mass black holes accelerating away from
one another. We also study wormhole and tachyonic solutions and how they affect
the stability of the vacuum.Comment: 41 pages LaTex, 5 figure
Radiative Corrections to Fixed Target Moller Scattering Including Hard Bremsstrahlung Effects
We present a calculation of the complete electroweak radiative
corrections to the Moller scattering process e^-e^- -> e^-e^-, including hard
bremsstrahlung contributions. We study the effects of these corrections on both
the total cross section and polarization asymmetry measured in low energy fixed
target experiments. Numerical results are presented for the experimental cuts
relevant for E-158, a fixed target e^-e^- experiment being performed at SLAC;
the effect of hard bremsstrahlung is to shift the measured polarization
asymmetry by approximately +4%. We briefly discuss the remaining theoretical
uncertainty in the prediction for the low energy Moller scattering polarization
asymmetry.Comment: 22 pgs; minor clarifications added and typos fixe
Super-conservative interpretation of muon g-2 results applied to supersymmetry
The recent developments in theory and experiment related to the anomalous
magnetic moment of the muon are applied to supersymmetry. We follow a very
cautious course, demanding that the supersymmetric contributions fit within
five standard deviations of the difference between experiment and the standard
model prediction. Arbitrarily small supersymmetric contributions are then
allowed, so no upper bounds on superpartner masses result. Nevertheless,
non-trivial exclusions are found. We characterize the substantial region of
parameter space ruled out by this analysis that has not been probed by any
previous experiment. We also discuss some implications of the results for
forthcoming collider experiments.Comment: 10 pages, latex, 3 fig
Neutrino-induced lepton flavor violation in gauge-mediated supersymmetry breaking
Gauge-mediated supersymmetry breaking is known to greatly suppress flavor
changing neutral current effects. However, we show that gauge mediation in the
context of leptogenesis implies potentially large lepton flavor violating
signals. If the heavy right-handed neutrinos that participate in leptogenesis
are lighter than the messenger scale of gauge mediation, they will induce
flavor off-diagonal masses to the sleptons which in turn can induce large
effects in mu to e gamma, tau to mu gamma, and mu-e conversion in nuclei. We
demonstrate this result and compute numerically the lepton-flavor violating
decay and conversion rates in scenarios of direct gauge mediation.Comment: 18 pages, 5 figure
On Yukawa quasi-unification with mu<0
Although recent data on the muon anomalous magnetic moment strongly disfavor
the constrained minimal supersymmetric standard model with mu<0, they cannot
exclude it because of theoretical ambiguities. We consider this model
supplemented by a Yukawa quasi-unification condition which allows an acceptable
b-quark mass. We find that the cosmological upper bound on the lightest
sparticle relic abundance is incompatible with the data on the branching ratio
of b-->s gamma, which is evaluated by including all the next-to-leading order
corrections. Thus, this scheme is not viable.Comment: 4 pages including 3 figures, Revte
Heavy mass expansion, light-by-light scattering and the anomalous magnetic moment of the muon
Contributions from light-by-light scattering to (g_\mu-2)/2, the anomalous
magnetic moment of the muon, are mediated by the exchange of charged fermions
or scalar bosons. Assuming large masses M for the virtual particles and
employing the technique of large mass expansion, analytical results are
obtained for virtual fermions and scalars in the form of a series in (m_\mu
/M)^2. This series is well convergent even for the case M=m_\mu. For virtual
fermions, the expansion confirms published analytical formulae. For virtual
scalars, the result can be used to evaluate the contribution from charged
pions. In this case our result confirms already available numerical
evaluations, however, it is significantly more precise.Comment: revtex4, eps figure
- …
