3,384 research outputs found

    Avoiding Liquidity Traps

    Get PDF
    Once the zero bound on nominal interest rates is taken into account, Taylor-type interest-rate feedback rules give rise to unintended self-fulfilling decelerating inflation paths and aggregate fluctuations driven by arbitrary revisions in expectations. These undesirable equilibria exhibit the essential features of liquidity traps, as monetary policy is ineffective in bringing about the government's goals regarding the stability of output and prices. This paper proposes several fiscal and monetary policies that preserve the appealing features of Taylor rules, such as local uniqueness of equilibrium near the inflation target, and at the same time rule out the deflationary expectations that can lead an economy into a liquidity trap.TAYLOR RULES; LIQUIDITY TRAPS; ZERO BOUND ON NOMINAL INTEREST RATES.

    Monetary Policy and Multiple Equilibria

    Get PDF
    In this paper, we characterize conditions under which interest rate feedback rules wherby the nominal interest rate is set as an increasing function of the inflation rate generate multiple equilibria. We show that these conditions depend not only on the fiscal regime (as emphasized in the fiscal theory of the price level) but also on the way in which money is assumed to enter preferences and technology. We analyze this issue in flexible and sticky price environments.MONETARY POLICY ; PRICES ; INTEREST RATE

    η\eta collective mode as A1g_{1g} Raman resonance in cuprate superconductors

    Full text link
    We discuss the possible existence a spin singlet excitation with charge ±2\pm2 (η\eta-mode) originating the A1gA_{1g} Raman resonance in cuprate superconductors. This η\eta-mode relates the dd-wave superconducting singlet pairing channel to a dd-wave charge channel. We show that the η\eta boson forms a particle-particle bound state below the 2Δ2\Delta threshold of the particle-hole continuum where Δ\Delta is the maximum dd-wave gap. Within a generalized random phase approximation and Bethe-Salpether approximation study, we find that this mode has energies similar to the resonance observed by Inelastic Neutron Scattering (INS) below the superconducting (SC) coherent peak at 2Δ2\Delta in various SC cuprates compounds. We show that it is a very good candidate for the resonance observed in Raman scattering below the 2Δ2\Delta peak in the A1gA_{1g} symmetry. Since the η\eta-mode sits in the S=0S=0 channel, it may be observable via Raman, X -ray or Electron Energy Loss Spectroscopy probes

    Three energy scales in the superconducting state of hole-doped cuprates detected by electronic Raman scattering

    Full text link
    We explored by electronic Raman scattering the superconducting state of Bi-2212 single crystal by performing a fine tuned doping study. We found three distinct energy scales in A1g, B1g and B2g symmetries which show three distinct doping dependencies. Above p=0.22 the three energies merge, below p=0.12, the A1g scale is no more detectable while the B1g and B2g scales become constant in energy. In between, the A1g and B1g scales increase monotonically with under-doping while the B2g one exhibits a maximum at p=0.16. The three superconducting energy scales appear to be an universal feature of hole-doped cuprates. We propose that the non trivial doping dependence of the three scales originates from Fermi surface topology changes and reveals competing orders inside the superconducting dome.Comment: 6 pages, 5 figure
    • …
    corecore