14 research outputs found

    New near-aphelion light curves of Comet 2P/Encke

    No full text
    We present new, near-aphelion, time series of photometry of Comet 2P/ Encke in Cousins-R band. With these light curves we find that the dominant, synodic rotational periodicity is either P0 = 11.079 ± 0.009 h or 2P0 = 22.158 ± 0.012 h. This is in contrast to data from the 1980s published by others that are consistent with 15.08- and 22.6-h periods. Those periods do not satisfy our phased light curves, and also the 1980s data are not easily reconciled with our periods. This could be due to P/Encke having non-principal axis rotation or due to a drift in the rotation period caused by outgassing torques. We observed the comet at five epochs: July, August, September, and October 2001, and September 2002, and the comet was at times intrinsically brighter than expected for a bare nucleus, due to an apparent contribution from an unresolved coma. Three-quarters of the data were obtained in the second and fifth epochs, and we analyzed these two time series using both the phase-dispersion minimization and "WindowCLEAN" techniques. At both epochs and with both techniques strong periodicities were found near frequencies f0 = 2.16 d^-1 and f1 = 4.35 d^-1. By then using visual inspection of the phased light curves to corroborate these frequencies, and by using the data from the other three epochs to properly align light curve features, we were able to derive P0 and 2P0 as the only solutions that satisfy all our observations. The periodicity due to f1 is clearly seen in our data, but we cannot tell from our data alone whether it is a manifestation of the nucleus's shape, non-principal axis rotation, or both. © 2004 Elsevier Inc. All rights reserved

    Deep Impact, Stardust-NExT and the behavior of Comet 9P/Tempel 1 from 1997 to 2010

    No full text
    We present observational data for Comet 9P/Tempel 1 taken from 1997 through 2010 in an international collaboration in support of the Deep Impact and Stardust-NExT missions. The data were obtained to characterize the nucleus prior to the Deep Impact 2005 encounter, and to enable us to understand the rotation state in order to make a time of arrival adjustment in February 2010 that would allow us to image at least 25% of the nucleus seen by the Deep Impact spacecraft to better than 80m/pixel, and to image the crater made during the encounter, if possible. In total, ~500 whole or partial nights were allocated to this project at 14 observatories worldwide, utilizing 25 telescopes. Seventy percent of these nights yielded useful data. The data were used to determine the linear phase coefficient for the comet in the R-band to be 0.045±0.001magdeg -1 from 1° to 16°. Cometary activity was observed to begin inbound near r~4.0 AU and the activity ended near r~4.6 AU as seen from the heliocentric secular light curves, water-sublimation models and from dust dynamical modeling. The light curve exhibits a significant pre- and post-perihelion brightness and activity asymmetry. There was a secular decrease in activity between the 2000 and 2005 perihelion passages of ~20%. The post-perihelion light curve cannot be easily explained by a simple decrease in solar insolation or observing geometry. CN emission was detected in the comet at 2.43 AU pre-perihelion, and by r=2.24 AU emission from C 2 and C 3 were evident. In December 2004 the production rate of CN increased from 1.8×10 23mols -1 to Q CN=2.75×10 23mols -1 in early January 2005 and 9.3×10 24mols -1 on June 6, 2005 at r=1.53 AU. © 2011 Elsevier Inc

    On the Evolution of Comets

    No full text
    corecore