149 research outputs found

    Structure and stability of chiral beta-tapes: a computational coarse-grained approach

    Full text link
    We present two coarse-grained models of different levels of detail for the description of beta-sheet tapes obtained from equilibrium self-assembly of short rationally designed oligopeptides in solution. Here we only consider the case of the homopolymer oligopeptides with the identical sidegroups attached, in which the tapes have a helicoid surface with two equivalent sides. The influence of the chirality parameter on the geometrical characteristics, namely the diameter, inter-strand distance and pitch, of the tapes have been investigated. The two models are found to produceequivalent results suggesting a considerable degree of universality in conformations of the tapes.Comment: 24 pages, 5 PS figures. Accepted to J. Chem. Phy

    Room Temperature Magnetic Field Measurements as a Tool to Localize Inter-turns Electrical Short Circuits in the LHC Main Dipole coils

    Get PDF
    In this report the method for the localization of the electric shorts circuits in the main LHC dipoles using the magnetic measurements at room temperature is presented. The steps of the method are discussed, and two cases are studied in detail. A complete statistics of the 12 cases analyzed up to now is given

    Random Errors in Superconducting Dipoles

    Get PDF
    The magnetic field in a superconducting magnet is mainly determined by the position of the conductors. Hence, the main contribution to the random field errors comes from random displacement of the coil with respect to its nominal position. Using a Monte-Carlo method, we analyze the measured random field errors of the main dipoles of the LHC, Tevatron, RHIC and HERA projects in order to estimate the precision of the conductor positioning reached during the production. The method can be used to obtain more refined estimates of the random components for future projects

    Field Quality in Low-Beta Superconducting Quadrupoles and Impact on the Beam Dynamics for the Large Hadron Collider Upgrade

    Get PDF
    A possible scenario for the luminosity upgrade of the Large Hadron Collider is based on large aperture quadrupoles to lower b* in the interaction regions. Here we analyze the measurements relative to the field quality of the RHIC and LHC superconducting quadrupoles to find out the dependence of field errors on the size of the magnet aperture. Data are interpreted in the framework of a MonteCarlo analysis giving the reproducibility in the coil positioning reached in each production. We show that this precision is likely to be independent of the magnet aperture. Using this result, we can carry out an estimate of the impact of the field quality on the beam dynamics for the collision optics

    Dependence of Magnetic Field Quality on Collar Supplier and Dimensions in the Main LHC Dipole

    Get PDF
    C. Santoni, coll. Atlas, to be published in the proceeding of the conferenceIn order to keep the electro-magnetic forces and to minimize conductor movements, the superconducting coils of the main Large Hadron Collider dipoles are held in place by means of austenitic steel collars. Two suppliers provide the collars necessary for the whole LHC production, which has now reached more than 800 collared coils. In this paper we first assess if the different collar suppliers origin a noticeable difference in the magnetic field quality measured at room temperature. We then analyze the measurements of the collar dimensions carried out at the manufacturers, comparing them to the geometrical tolerances. Finally we use a magneto-static model to evaluate the expected spread in the field components induced by the actual collar dimensions. These spreads are compared to the magnetic measurements at room temperature over the magnet production in order to identify if the collars, rather than other components or assembly process, can account for the measured magnetic field effects. It has been found that in one over the three Cold Mass Assemblers the driving mechanism of the magnetic field harmonics b2 and a3 is the collar shape

    Trends in Field Quality along the Production of the LHC Dipoles and Differences among Manufacturers

    Get PDF
    More than two thirds of the dipoles of the Large Hadron Collider have been manufactured and their magnetic field has been measured at room temperature. In this paper we make a review of the trends that have been observed during the production. In some cases, the trends were traced back to displacements of conductors with respect to the nominal lay-out. The analysis allows detecting the most critical zones in the superconducting coil as far as field quality is concerned. The second part of the paper makes the point of the observed differences in field quality between the three manufacturers. The analysis allows evaluating which multipoles are more affected, what magnitudes of displacements are necessary to explain these differences (the manufacturers all producing the same baseline), and what could be the origin of such differences

    Estimating field quality in low-beta superconducting quadrupoles and its impact on bBeam stability

    Get PDF
    Random components of field harmonics in superconducting quadrupoles are usually estimated by computing the effect of a random positioning of the coil blocks with an r.m.s. of 0.05 mm. Here, we review the experience acquired in the construction of 7 superconducting quadrupoles in the RHIC and in the LHC projects to estimate the reproducibility in the coil positioning. Post-processed data show that the reproducibility is around 0.020 mm r.m.s., and independent of the aperture. Using this result, we work out a scaling law for the random components as a function of the magnet aperture. As an application, we analyse the impact on geometrical aberrations of the expected field errors in presence of large beta functions in the triplet

    Short Circuit Localization in the LHC Main Dipole Coils by means of Room Temperature Magnetic Measurements

    Get PDF
    During the construction of the LHC main dipoles, 12 cases of short circuits between the cables of the superconducting coils have been detected. Some of them appeared only under the press, making impossible their localization after disassembly. In this paper we describe a method to locate electrical shorts through the use of room temperature magnetic measurements. An example case is discussed in detail to illustrate the features of the approach, and a statistic of the cases met during the production of more that 70% of the dipole total quantity is presented

    Successful immunosenescence and the remodelling of immune responses with ageing.

    Get PDF
    In recent decades, major theoretical and technological advances have been achieved in the field of immunology. These have allowed the scientific community to analyse the immune system in a much more sophisticated manner than was possible even 20 years ago. Moreover, great theoretical changes have also occurred in gerontology - in particular, the hypothesis has been put forward that ageing and diseases are two different phenomena, and that successful ageing, i.e. ageing in good psychophysical conditions, is really possible for most humans and animals. Immunosenescence was then carefully investigated, either in selected healthy people of advanced age or in the oldest old people, such as healthy centenarians. The main results showed that most immune parameters are indeed well preserved even at this far advanced age. This paper deals with some of the most important theoretical problems of immunosenescence. An immunological tenet was that the most important phenomenon of immunosenescence is the involution of the thymus. In most textbooks and papers it is taken for granted that the thymus starts its involution immediately after puberty. When people aged 60-65 were considered old, it was not difficult to think that they could live for the rest of their life with a fully involuted thymus. The findings on centenarians challenge this tenet, as they have only a small reduction of T lymphocytes, and a relatively normal number of virgin and memory T cells, together with a functional T cell repertoire. Other observations reported here on centenarians, concerning the activity of B lymphocytes and the cytokine network, as well as those on the well-preserved innate immunity and the cells' capability of undergoing proliferation after appropriate stimuli, suggest that complex immune changes occur with age, but also indicate that we have to modify our attitude, to grasp the new scenario which is emerging. Immunosenescence can no longer be considered as a unidirectional deterioration, and this complex phenomenon is much better described by terms such as 'remodelling', 'reshaping' or 'retuning'
    • …
    corecore