22 research outputs found

    Stress-induced c-Fos expression is differentially modulated by dexamethasone, diazepam and imipramine

    Get PDF
    Immobilization stress upregulates c-Fos expression in several CNS areas. Repeated stress or the use of drugs can modulate stress-induced c-Fos expression. Here, we investigated in 40 different areas of the rat brain the effects of dexamethasone (SDX, a synthetic glucocorticoid), diazepam (SBDZ, a benzodiazepine), and imipramine (IMI, an antidepressant) on the c-Fos expression induced by restraint stress. Wistar rats were divided into four groups and submitted to 20 days of daily injection of saline (three first groups) or imipramine, 15 mg/kg, i.p. On day 21, animals were submitted to injections of saline (somatosensory, SS), SDX (1 mg/kg, i.p.), SBDZ (5 mg/kg, i.p.), or IMI (15 mg/kg, i.p.) before being submitted to restraint. Immediately after stress, the animals were perfused and their brains processed with immunohistochemistry for c-Fos (Ab-5 Oncogene Science). Dexamethasone reduced stress- induced c-Fos expression in SS cortex, hippocampus, paraventricular nucleus of the hypothalamus (PVH), and locus coeruleus (LC), whereas diazepam reduced c-Fos staining in the SS cortex, hippocampus, bed nucleus of stria terminalis, septal area, and hypothalamus (preoptic area and supramammillary nucleus). Chronic administration of imipramine decreased staining in the hippocampus, PVH, and LC, while increasing it in the nucleus raphe pallidus. We conclude that dexamethasone, diazepam and imipramine differentially modulate stress-induced Fos expression. the present study provides an important comparative background that may help in the further understanding of the effects of these compounds and on the brain activation as well as on the behavioral, neuroendocrine, and autonomic responses to stress.UFRRJ, Dept Physiol Sci, BR-23890000 Rio de Janeiro, BrazilUniversidade Federal de SĂŁo Paulo, Dept Physiol, SĂŁo Paulo, BrazilUniversidade Federal de SĂŁo Paulo, Dept Psychobiol, SĂŁo Paulo, BrazilUniversidade Federal de SĂŁo Paulo, Dept Physiol, SĂŁo Paulo, BrazilUniversidade Federal de SĂŁo Paulo, Dept Psychobiol, SĂŁo Paulo, BrazilWeb of Scienc

    Turner syndrome and sexual differentiation of the brain: implications for understanding male-biased neurodevelopmental disorders

    Get PDF
    Turner syndrome (TS) is one of the most common sex chromosome abnormalities. Affected individuals often show a unique pattern of cognitive strengths and weaknesses and are at increased risk for a number of other neurodevelopmental conditions, many of which are more common in typical males than typical females (e.g., autism and attention-deficit hyperactivity disorder). This phenotype may reflect gonadal steroid deficiency, haploinsufficiency of X chromosome genes, failure to express parentally imprinted genes, and the uncovering of X chromosome mutations. Understanding the contribution of these different mechanisms to outcome has the potential to improve clinical care for individuals with TS and to better our understanding of the differential vulnerability to and expression of neurodevelopmental disorders in males and females. In this paper, we review what is currently known about cognition and brain development in individuals with TS, discuss underlying mechanisms and their relevance to understanding male-biased neurodevelopmental conditions, and suggest directions for future research
    corecore