31 research outputs found

    Recent Advances on Surface-Modified GBM Targeted Nanoparticles: Targeting Strategies and Surface Characterization

    Get PDF
    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, associated with low long-term survival. Nanoparticles (NPs) developed against GBM are a promising strategy to improve current therapies, by enhancing the brain delivery of active molecules and reducing off-target effects. In particular, NPs hold high potential for the targeted delivery of chemotherapeutics both across the blood-brain barrier (BBB) and specifically to GBM cell receptors, pathways, or the tumor microenvironment (TME). In this review, the most recent strategies to deliver drugs to GBM are explored. The main focus is on how surface functionalizations are essential for BBB crossing and for tumor specific targeting. We give a critical analysis of the various ligand-based approaches that have been used to target specific cancer cell receptors and the TME, or to interfere with the signaling pathways of GBM. Despite the increasing application of NPs in the clinical setting, new methods for ligand and surface characterization are needed to optimize the synthesis, as well as to predict their in vivo behavior. An expert opinion is given on the future of this research and what is still missing to create and characterize a functional NP system for improved GBM targeting

    Effect of a psoriatic microenvironment in a threedimensional model of normal human skin

    Get PDF
    Among the cytokines involved in the pathogenesis and in the progression of the disease, tumor necrosis factor (TNF)-alpha and interleukin (IL)-17 are the most relevant. A three dimensional model of organotypic human skin cultures is a valuable approach for exposing the whole skin to TNF-alpha and IL-17 as specific proinflammatory stimuli, thus mimicking a psoriatic microenvironment. Normal human skin explants were obtained from plastic surgery of healthy 20-40 year-old women (n = 7) after informed consent. Bioptic fragments were cultured overnight in a DMEM medium and further divided before adding either 100 ng/ml TNF-alpha or 50 ng/ml IL-17 or a combination of both cytokines. Samples were harvested 24 hours after cytokine incubation. Each patient was represented in all experimental groups. Epidermal proliferation together with the expression of terminal differentiation biomarkers (keratin 10, K10, and 14, K14) and of intercellular adhesion (occludin for tight junctions and E-cadherin for adherens junctions) were investigated by indirect immunofluorescence. Vibrational spectroscopy analysis by a confocal micro-Raman system (785nm laser) has been carried out in three skin samples to evaluate differences of the spectrum versus normal skin. Both cytokines induced a strong inhibition of keratinocyte proliferation (more than 80% compared with their respective controls). A non-continuous occludin expression in the granular layer was observed after the TNF-alpha and IL-17 exposure. Immunolabelings for E-cadherin in tight junctions, for K10 in the suprabasal layers, and for K14 in the basal layer were similar in all experimental groups. The preliminary Raman results highlighted some biomolecules modifications in TNF-alpha- and IL-17-treated skin samples related to ceramide and amide III (keratin proteins) peaks. These results suggest that in this experimental model we reproduced a psoriatic microenvironment in which TNF-alpha and IL-17 induce an early alteration of the homeostasis of the inner proliferative layer, the upper granular layer, and stratum corneum as shown by cell proliferation inhibition, occludin expression, and the biomolecules Raman bands

    High-Resolution Raman Imaging of >300 Patient-Derived Cells from Nine Different Leukemia Subtypes:A Global Clustering Approach

    Get PDF
    Leukemia comprises a diverse group of bone marrow tumors marked by cell proliferation. Current diagnosis involves identifying leukemia subtypes through visual assessment of blood and bone marrow smears, a subjective and time-consuming method. Our study introduces the characterization of different leukemia subtypes using a global clustering approach of Raman hyperspectral maps of cells. We analyzed bone marrow samples from 19 patients, each presenting one of nine distinct leukemia subtypes, by conducting high spatial resolution Raman imaging on 319 cells, generating over 1.3 million spectra in total. An automated preprocessing pipeline followed by a single-step global clustering approach performed over the entire data set identified relevant cellular components (cytoplasm, nucleus, carotenoids, myeloperoxidase (MPO), and hemoglobin (HB)) enabling the unsupervised creation of high-quality pseudostained images at the single-cell level. Furthermore, this approach provided a semiquantitative analysis of cellular component distribution, and multivariate analysis of clustering results revealed the potential of Raman imaging in leukemia research, highlighting both advantages and challenges associated with global clustering.</p

    Comparing the effects of augmented virtual reality treadmill training versus conventional treadmill training in patients with stage II-III Parkinson’s disease: the VIRTREAD-PD randomized controlled trial protocol

    Get PDF
    BackgroundIntensive treadmill training (TT) has been documented to improve gait parameters and functional independence in Parkinson’s Disease (PD), but the optimal intervention protocol and the criteria for tailoring the intervention to patients’ performances are lacking. TT may be integrated with augmented virtual reality (AVR), however, evidence of the effectiveness of this combined treatment is still limited. Moreover, prognostic biomarkers of rehabilitation, potentially useful to customize the treatment, are currently missing. The primary aim of this study is to compare the effects on gait performances of TT + AVR versus TT alone in II-III stage PD patients with gait disturbance. Secondary aims are to assess the effects on balance, gait parameters and other motor and non-motor symptoms, and patient’s satisfaction and adherence to the treatment. As an exploratory aim, the study attempts to identify biomarkers of neuroplasticity detecting changes in Neurofilament Light Chain concentration T0-T1 and to identify prognostic biomarkers associated to blood-derived Extracellular Vesicles.MethodsSingle-center, randomized controlled single-blind trial comparing TT + AVR vs. TT in II-III stage PD patients with gait disturbances. Assessment will be performed at baseline (T0), end of training (T1), 3 (T2) and 6 months (T3, phone interview) from T1. The primary outcome is difference in gait performance assessed with the Tinetti Performance-Oriented Mobility Assessment gait scale at T1. Secondary outcomes are differences in gait performance at T2, in balance and spatial–temporal gait parameters at T1 and T2, patients’ satisfaction and adherence. Changes in falls, functional mobility, functional autonomy, cognition, mood, and quality of life will be also assessed at different timepoints. The G*Power software was used to estimate a sample size of 20 subjects per group (power 0.95, α &lt; 0.05), raised to 24 per group to compensate for potential drop-outs. Both interventions will be customized and progressive, based on the participant’s performance, according to a predefined protocol.ConclusionThis study will provide data on the possible superiority of AVR-associated TT over conventional TT in improving gait and other motor and non-motor symptoms in persons with PD and gait disturbances. Results of the exploratory analysis could add information in the field of biomarker research in PD rehabilitation

    Advances in the Field of Micro- and Nanotechnologies Applied to Extracellular Vesicle Research: Take-Home Message from ISEV2021

    No full text
    Extracellular Vesicles (EVs) are naturally secreted nanoparticles with a plethora of functions in the human body and remarkable potential as diagnostic and therapeutic tools. Starting from their discovery, EV nanoscale dimensions have hampered and slowed new discoveries in the field, sometimes generating confusion and controversies among experts. Microtechnological and especially nanotechnological advances have sped up biomedical research dealing with EVs, but efforts are needed to further clarify doubts and knowledge gaps. In the present review, we summarize some of the most interesting data presented in the Annual Meeting of the International Society for Extracellular Vesicles (ISEV), ISEV2021, to stimulate discussion and to share knowledge with experts from all fields of research. Indeed, EV research requires a multidisciplinary knowledge exchange and effort. EVs have demonstrated their importance and significant biological role; still, further technological achievements are crucial to avoid artifacts and misleading conclusions in order to enable outstanding discoveries

    A Longitudinal 3D Investigation on Facial Similarity among Two Monozygotic Twins in Their First Childhood: An Application of the 3D-3D Facial Superimposition Technique

    No full text
    Children affected by orofacial disorders mix functional alterations with morphological problems, and suitable techniques should be devised for their analysis. Stereophotogrammetry and 3D-3D facial superimposition have already proven to reliably assess morphological differences even between twin siblings, separating the effect of genetic and environmental factors. However, little information is available about twin babies. We longitudinally analyzed a couple of healthy monozygotic twin sisters aged 6 months to 5 years (height time points). The entire 3D facial models of the two sisters were registered according to the least point-to-point distance, and the relevant RMS (root mean square) distance between the facial models was calculated at each time and compared with reference data recorded from adult twins (Mann-Whitney test, p &lt; 0.05). RMS values in the twin sisters were on average 1.18 &plusmn; 0.21 mm, and 1.86 &plusmn; 0.53 mm in adults, with a significant difference (p &lt; 0.01). Results showed that twins are more similar in early childhood when environmental factors are supposed to have not influenced facial morphology sufficiently. Additionally, the technique seems adequate to detect even small differences: the faces of the twin sisters were not fully identical. 3D-3D facial superimposition techniques can objectively quantify facial dissimilarity even in monozygotic twins. The method may be applied to the faces of twins discordant for some orofacial and maxillofacial pathology and potentially separate genetic and environmental factors

    Characterization of the COPD Salivary Fingerprint through Surface Enhanced Raman Spectroscopy: A Pilot Study

    No full text
    Chronic Obstructive Pulmonary Disease (COPD) is a debilitating pathology characterized by reduced lung function, breathlessness and rapid and unrelenting decrease in quality of life. The severity rate and the therapy selection are strictly dependent on various parameters verifiable after years of clinical observations, missing a direct biomarker associated with COPD. In this work, we report the methodological application of Surface Enhanced Raman Spectroscopy combined with Multivariate statistics for the analysis of saliva samples collected from 15 patients affected by COPD and 15 related healthy subjects in a pilot study. The comparative Raman analysis allowed to determine a specific signature of the pathological saliva, highlighting differences in determined biological species, already studied and characterized in COPD onset, compared to the Raman signature of healthy samples. The unsupervised principal component analysis and hierarchical clustering revealed a sharp data dispersion between the two experimental groups. Using the linear discriminant analysis, we created a classification model able to discriminate the collected signals with accuracies, specificities, and sensitivities of more than 98%. The results of this preliminary study are promising for further applications of Raman spectroscopy in the COPD clinical field

    Raman spectroscopy as a quick tool to assess purity of extracellular vesicle preparations and predict their functionality

    Get PDF
    Extracellular vesicles (EVs) from a variety of stem cell sources are believed to harbour regenerative capacity, which may be exploited for therapeutic purposes. Because of EV interaction with other soluble secreted factors, EV activity may depend on the employed purification method, which limits cross-study comparisons and therapeutic development. Raman spectroscopy (RS) is a quick and easy method to assess EV purity and composition, giving in-depth biochemical overview on EV preparation. Hereby, we show how this method can be used to characterise EVs isolated from human liver stem cells and bone marrow mesenchymal stem/stromal cells by means of conventional ultracentrifugation (UC) and size exclusion chromatography (SEC) protocols. The obtained EV preparations were demonstrated to be characterised by different degrees of purity and a specific Raman fingerprint that represents both the cell source and the isolation procedure used. Moreover, RS provided useful hints to explore the factors underlying the functional diversity of EV preparations from the same cell source, thus representing a valuable tool to assess EV quality prior to functional assays or therapeutic application
    corecore