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Background: Intensive treadmill training (TT) has been documented to improve 
gait parameters and functional independence in Parkinson’s Disease (PD), but 
the optimal intervention protocol and the criteria for tailoring the intervention 
to patients’ performances are lacking. TT may be  integrated with augmented 
virtual reality (AVR), however, evidence of the effectiveness of this combined 
treatment is still limited. Moreover, prognostic biomarkers of rehabilitation, 
potentially useful to customize the treatment, are currently missing. The primary 
aim of this study is to compare the effects on gait performances of TT  +  AVR 
versus TT alone in II-III stage PD patients with gait disturbance. Secondary aims 
are to assess the effects on balance, gait parameters and other motor and non-
motor symptoms, and patient’s satisfaction and adherence to the treatment. As 
an exploratory aim, the study attempts to identify biomarkers of neuroplasticity 
detecting changes in Neurofilament Light Chain concentration T0-T1 and 
to identify prognostic biomarkers associated to blood-derived Extracellular 
Vesicles.

Methods: Single-center, randomized controlled single-blind trial comparing 
TT  +  AVR vs. TT in II-III stage PD patients with gait disturbances. Assessment 
will be performed at baseline (T0), end of training (T1), 3 (T2) and 6  months (T3, 
phone interview) from T1. The primary outcome is difference in gait performance 
assessed with the Tinetti Performance-Oriented Mobility Assessment gait 
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scale at T1. Secondary outcomes are differences in gait performance at T2, in 
balance and spatial–temporal gait parameters at T1 and T2, patients’ satisfaction 
and adherence. Changes in falls, functional mobility, functional autonomy, 
cognition, mood, and quality of life will be also assessed at different timepoints. 
The G*Power software was used to estimate a sample size of 20 subjects per 
group (power 0.95, α  <  0.05), raised to 24 per group to compensate for potential 
drop-outs. Both interventions will be customized and progressive, based on the 
participant’s performance, according to a predefined protocol.

Conclusion: This study will provide data on the possible superiority of AVR-
associated TT over conventional TT in improving gait and other motor and 
non-motor symptoms in persons with PD and gait disturbances. Results of the 
exploratory analysis could add information in the field of biomarker research in 
PD rehabilitation.

KEYWORDS

Parkinson’s disease, gait, balance, falls, rehabilitation, treadmill, biomarkers, 
Extracellular Vesicles

1 Introduction

Parkinson’s Disease (PD) is a complex neurodegenerative disorder 
that affects from 1 to 2% of people over 65 years of age (1), 
characterized by multiple motor and non-motor symptoms (2). 
Among motor disturbances, gait disturbance is the key symptom of 
the disease, which can affect step length, walking speed, trunk 
oscillations, and arms’ pendular movements; freezing and festination 
phenomena are possible. Gait disturbance is often accompanied by 
alterations in posture and balance, and can be associated with falls, 
with a decisive impact on the autonomy and quality of life (QoL) of 
the patient and caregiver (3). The control of motor symptoms related 
to PD is mainly carried out with pharmacological therapy; in recent 
years, deep brain stimulation has also acquired an important role in 
the advanced phases of the disease (4). However, these interventions 
have some limitations, especially in the presence of balance and gait 
disturbances, and the literature highlights the importance of 
integrating rehabilitation into the care of patients with PD (5–7). 
Intensive walking training in PD has evidence of effectiveness, in 
particular in stride speed and length, on activities of daily living (8, 9) 
and in reducing falls (10). Among the rehabilitation interventions for 
improving walking in PD, conventional treadmill training (TT) has 
resulted to be more effective compared to no-TT rehabilitation in 
improving gait speed and stride length with moderate and low-quality 
evidence, respectively (11), highlighting the need to confirm these 
results with higher evidence and to establish an optimal intervention 
protocol including treatment personalization (12).

Regarding non-motor symptoms, cognitive impairment may 
associate or even precede motor symptoms in PD and can worsen over 
time from mild cognitive impairment to full-blown dementia during the 
disease course. Drugs give limited benefits to this disorder, making it 
essential to explore the effects of non-pharmacological approaches (13). 
Targeted cognitive training presents some evidence of effectiveness in 
patients with initial impairment, but a recent review suggests that TT 
produces even greater cognitive effects (14). Virtual reality (VR) is used 
in the motor and cognitive training of patients with various neurological 
diseases, including PD. VR refers to a computer-generated 

three-dimensional digital environment that can be  explored and 
interacted with by a person. Augmented reality or augmented virtual 
reality (AVR) is the union between VR and real life. The person who 
experiences it can interact with virtual content in the real world. 
Computer-generated content is superimposed on reality through visual 
stimuli such as objects and films, tactile and olfactory sensations, and 
sounds. AVR is proposed as an interactive approach, that aims to amplify 
the effects of motor training, both directly and indirectly, increasing the 
patient’s motivation and satisfaction, promoting greater adherence and 
participation to treatment, and training also cognitive aspects of fall risk 
(14). For these reasons, AVR is considered an emerging and promising 
therapeutic tool in neurorehabilitation (15). In this regard, positive results 
emerged from the clinical trial of Gulcan et al. (16) in which AVR-VR TT 
has been demonstrated to be effective in PD on most of spatial–temporal 
gait parameters compared to conventional physical therapy.

Moreover, results from recent reviews dedicated to comparing the 
benefit of VR rehabilitation, including TT, versus conventional one 
showed that VR appears to be promising in motor outcomes such as 
gait and mobility (17–19), obtaining the most replicated and 
convincing result on balance (18–21); less evidence has been reported 
on functional autonomy (19) and QoL (18).

The Motek C-Mill is a recently developed treadmill for assessing and 
training gait and balance. By integrating AVR, audible and visual cues, 
and force platform technology, C-Mill enables obstacle avoidance 
training, dual-tasking applications, realistic VR environments, and a 
variety of balance challenges to promote balance strategies and gait 
adaptation and prepare patients to regain walking in daily life, using a safe 
and controlled environment. The integration with a force platform allows 
the acquisition of the trajectory of the center of pressure, automatically 
adapting the complexity of the tasks based on patient performance in 
real-time and returning feedback to the patient and the therapist to 
monitor progress and performance. The device was developed to treat gait 
disorders of various origins; in particular, the C-Mill has been used to 
study obstacle avoidance difficulties in PD (22, 23), but its effectiveness in 
the rehabilitation of these patients needs to be confirmed. Focusing on the 
comparison between conventional TT versus TT+AVR treatment effect 
on PD motor symptoms, current results are in favor of the TT+AVR for 
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the gain obtained in incident falls in the long period (6 months) and in 
gait adaptability, a key target for reducing fall risk (22). These data come 
from 2 studies conducted on older at risk of falling, including cases 
affected by PD and results have been obtained using a quantitative 
method of gait assessment, the GaitRite mat (23, 24), preliminary data 
offering promising results on a possible benefit of interventions that 
combine TT and AVR in PD (25).

The integration of VR on TT in PD rehabilitation is an extremely 
current topic in PD rehabilitation research. Both interventions 
separately showed positive results on gait parameters (23–26), in 
particular stride speed and length and also balance, however, larger 
studies with a randomized controlled design are necessary to define 
recommendations for the use of VR and TT, isolated and in 
combination, in PD rehabilitation, to be applied according also to the 
patient characteristics.

Indeed, since the effect of rehabilitation may be different across 
motor subtypes (27) and disease severity (8), treatment personalization 
holds promise in PD rehabilitation. However, a timely optimization of 
personalized rehabilitation treatment for PD patients is nowadays at 
least in part limited by the lack of measurable biomarkers indicative 
of neuroplasticity phenomena and predictive of the response to the 
rehabilitation treatment. In this regard, Neurofilament Light Chain 
(NfL) has been recognized as a non-specific marker indicative of 
axonal damage in different neurological diseases (28–30), whereas it 
is not fully understood whether and how its concentration changes 
after rehabilitation treatment. In late phase after stroke the adaptive 
synaptic plasticity is supposed to be  the main mechanism of NfL 
release, suggesting that this biomarker could also be useful to track the 
positive effects following rehabilitation (29). Recent literature suggests 
that neuroplasticity phenomena can be  investigated with other 
innovative approaches, spanning from quantification of single 
molecules with highly sensitive technologies to more complex 
biomarkers like miRNome profile and circulating Extracellular 
Vesicles (cEVs) characterization. The study of the cellular processes 
taking place in the central nervous system in patients with PD before, 
during, and after rehabilitation might provide useful tools to correlate 
the severity of the damage and the peculiarities of the patient with the 
effectiveness of treatment. cEVs are natural nanoparticles defined as 
membrane-bound nanovesicles, released by body cells under 
physiological and pathological conditions as vehicles for bioactive 
molecules useful for intercellular communication. It has recently been 
demonstrated that biological fluids are rich in such vesicles, in 
particular vesicles originating from all the organs of our body, 
including the central nervous system, circulate in the blood (31). cEVs 
may change in concentration, dimension and biochemical content as 
a consequence of pathological processes and possibly after 
rehabilitation. In patients with PD, vesicles appear to play a role in the 
transport of molecules involved in the pathogenetic mechanisms of 
the disease itself, such as for example in the transport of the alpha-
synuclein protein at the cerebral and peripheral level (32). The 
presence of cEVs involved in the pathogenesis and evolution of the 
disease and carriers of potential diagnostic markers has been 
demonstrated in peripheral blood (33). However, the size, 
heterogeneity, and large number of molecules present within and on 
cEVs have limited their use for diagnostic purposes. Raman 
spectroscopy is proposed as a useful method for the rapid and 
exhaustive biochemical characterization of circulating exosomes 
without the use of staining and labeling procedures. It has already 

been demonstrated how the Raman signature of cEVs can 
be correlated with some clinical scales commonly used for PD patient 
profiling, suggesting their potential use for patient stratification (34).

In summary, the evidence of the potential superiority of TT + AVR 
versus TT to improve gait in PD is still preliminary, and few studies 
include both clinical and instrumental gait measures, as it is instead 
recommended (3); further, an optimal TT(+AVR) protocol, 
customized to patients’ performances has not been established; finally, 
potential biomarkers of neuroplasticity and prognostic biomarkers are 
still under study.

Taking into account these considerations, the primary objective 
of this study is to compare the effects on gait performances of an 
integrated rehabilitation intervention before and after intensive 
rehabilitation with TT endowed of AVR, versus TT alone in patients 
with PD in II-III Hoehn and Yahr stage (35) with gait disturbances. 
The secondary objectives are to assess the effects of the interventions 
on balance performances, kinematic gait parameters and other motor 
and non motor symptoms immediately after treatment and at a 
3-months follow up, and to assess the patient’s satisfaction and 
adherence to the treatment. The exploratory objective is to investigate 
potential serum biomarkers of neuroplasticity and prognosis.

2 Methods and analysis

Consensus meetings were held with movement disorders experts 
(Azienda Ospedaliero Universitaria Careggi, Parkinson Unit, 
Florence), guided by a Neurologist (S.R.) with more than 20 years 
expertise in PD, rehabilitation experts (Department of experimental 
and clinical medicine, University of Florence, IRCCS Fondazione Don 
Carlo Gnocchi of Florence), and biologists of the Laboratory of 
Nanomedicine and Clinical Biophotonics (LABION, IRCCS 
Fondazione Don Carlo Gnocchi of Milan), guided by M.B. with more 
than 10 years of expertise in biomarkers research, to develop an 
extensive and feasible assessment protocol with the following 
requirements: (1) to identify variables that can be easily and reliably 
collected in an inpatient rehabilitation setting, using internationally 
recommended and validated tools, adopting, when available, Italian 
versions, (2) to gain objective measures of clinical and functional 
variables through instrumental assessment (3) to monitor changes in 
biological markers potentially indicative of neuroplasticity or 
predictive of rehabilitation outcomes.

In more detail, the clinical assessment protocol has been 
developed in collaboration with the Parkinson Unit by Neurologists, 
Neuropsychologists, Physiatrists and Physiotherapists with long-
lasting clinical and research expertise in neurological rehabilitation; 
the rehabilitation intervention has been developed in collaboration 
with the Parkinson Unit and will be carried out by Physiotherapists 
with at least 5 years of expertise in the rehabilitation of PD patients; all 
assessments will be performed by researchers with similar clinical 
experience and background in neurorehabilitation research, blind to 
treatment assignment.

2.1 Study design

This is a single-center, no-profit, parallel arm randomized 
controlled single-blind trial with an active comparator where the 
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experimental intervention is represented by an TT+AVR and the 
comparator by a conventional TT.

Randomization will be performed by an external Researcher (not 
involved in the study design or procedures): a list of 0–1 will 
be generated using Phyton. Allocation will be concealed. Medical staff 
will propose consecutively the study for all eligible patients referring 
to the Parkinson Unit and the IRCCS Don Gnocchi Florence, 
assigning, in case of enrollment, an identification number to 
the participant.

Outcome raters will be  blinded to the treatment assignment, 
including clinicians assessing the eligibility of patients and the raters 
(Neurologist, Physiatrist, Psychologist, Physiotherapist, Laboratory 
staff). Blindness will be  ensured by the modality and timing of 
assessments at T0, T1, and T2 that will be conducted at times other 
than treatment and by raters not involved in the training. Blinding will 
be removed if requested by the participant at the end of the study and 
in case of undesirable effects.

The promoter of the study is the Department of Clinical and 
Experimental Medicine, University of Florence, Italy; the study will 
be performed at “Struttura Organizzativa Dipartimentale (SOD) di 
Riabilitazione Generale-Istituto di Ricovero e Cura a Carattere 
Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, Florence.”

Two collaborators for external services will take part in the study:

 • The Movement Analysis Laboratory at IRCCS Don Carlo 
Gnocchi Florence, dedicated to instrumental data analysis 
(postural sway and gait analysis).

 • The Laboratory of Nanomedicine and Clinical Biophotonics 
(LABION) at IRCCS Fondazione Don Carlo Gnocchi, in Milan, 
dedicated to biological data analysis.

The study received Ethical Committee approval from the local 
Institutional Review Board (Comitato Etico Regione Toscana – Area 
Vasta Centro) on the 5th of July 2022 (Approval Number: 
20915_spe).

The registration on ClinicalTrials.gov has been completed and the 
study has been reviewed obtaining the identification number 
“NCT05902065.”

2.2 Sample size estimation

The sample size was estimated based on the primary outcome of 
the study “the evaluation of the difference in gait assessed by the 
Tinetti Performance-Oriented Mobility Assessment gait (POMA-G) 
scale (36) between the TT+AVR and the TT group at T1.” Data for the 
estimation were obtained from a previous study aiming to evaluate the 
effects of non-conventional TT (partial weight-supported TT) on 
patients with PD (37) using the POMA-G scale. Mean values observed 
in the POMA-G score after 4 weeks of treatment were 10.7 ± 1.1 and 
11.7 ± 0.5, for the conventional gait training and partial weight-
supported TT group, respectively, leading to a high effect size d = 1.17. 
Based on those data and assuming a statistical power of 95% and an 
α = 0.05, the resulting sample was 20 subjects per arm. Dropouts are 
expected to be around 20%. To compensate for possible dropouts, the 
enrolment of a further 8 patients has been deemed appropriate, 
reaching an estimate of 24 subjects per group. Thus, 48 patients will 
be enrolled starting from the date of Ethical Committee approval, 

within July 2024. The sample size has been estimated using G*Power 
software (38).

2.3 Inclusion and exclusion criteria

Individuals with idiopathic PD consecutively referring for 
counseling and outpatient rehabilitation management will be included, 
if they fulfill the following inclusion criteria:

 • diagnosis of PD according to the POSTUMA diagnostic criteria 
(39), in II-III Hoehn and Yahr stage (35), in stable drug therapy 
for at least 1 month

 • age more than 18
 • gait disturbance
 • ability to walk for at least 5 min without assistance
 • willing to participate in the study and ability to understand and 

sign informed consent

Individuals will be excluded in the presence of:

 • other pathologies able to interfere with motor skills as 
symptomatic arthritis involving hip/knee/ankle, stroke outcomes 
or severe polyneuropathy

 • cognitive impairment potentially interfering with rehabilitation 
procedures, estimated as a corrected score of less than 18.58 at 
the Montreal Cognitive Assessment (MoCA) (40)

 • hallucinations and other psychiatric disorders not controlled by 
drug therapy, as in case of alcohol or drug abuse

 • uncompensated visual/auditory deficit that limits the enjoyment 
of the cues provided by the AVR

 • communication deficit from any cause that impairs 
understanding of the task and the objectives of the intervention

 • medical conditions hindering the effect of the training as severe 
orthostatic hypotension and severe cardiovascular diseases.

Patients undergoing other experimental protocols will also 
be excluded, whereas patients who regularly engage in physical activity 
or sport will not be excluded.

Pharmacological treatment is required to be  stable until T1. 
During the study, patients will be  excluded in case of insufficient 
adherence to the intervention according to the study procedures. 
Missing up to 5 sessions is allowed, and lost sessions will be possibly 
made up at the end of treatment. Participants who miss more than 5 
sessions will be considered dropouts.

2.4 Assessment and timeline of the study

The study is comprehensive of clinical, instrumental, and 
biological assessments that will be performed by blind raters, in the 
“on” medication status of patients, at the same time of day for each 
subject. Assessment timing is reported in Figure  1. Clinical, 
neuropsychological, and instrumental variables such as postural sway 
and gait analysis will be collected at baseline (T0), at the end of the 
treatment (T1), and 3 months after the end of treatment (T2). At 
6 months after the end of treatment (T3) a phone interview will 
be performed to verify the occurrence of falls in a relevant time frame. 
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The same assessment protocol will be performed at each time point 
(T0, T1, T2) with some exceptions: automatic acquisition of gait 
parameters using C-Mill in C-Gait mode will be collected only at T1 
and T2 in a subgroup of cases; at T1, a 5-point Likert scale will also 
be  administered to register patient satisfaction; during the phone 
interview at T3 only the falls questionnaire will be  administered; 
biological samples will be collected at T0 and T1.

2.4.1 Clinical assessment
Clinical assessment will be performed by raters experienced in PD 

patients’ evaluation. The Montreal Cognitive Assessment (MoCA) 
(40) and Beck Depression Inventory II, Italian version (BDI) (41) will 
be used to exclude patients with dementia and severe depression. All 
enrolled participants will be assessed by the following scales/tests:

 1. the Performance Oriented Mobility Assessment (POMA) (36) 
to evaluate gait (POMA-G) and balance (POMA-B)

 2. the MDS-UPDRS part III (42, 43) to evaluate different 
symptoms and signs in PD

 3. the Italian version of the Parkinson’s disease cognitive rating 
scale (PD-CRS) (44) to evaluate global cognitive functions

 4. the Trail-Making-Test A and B (TMT-A and B) (45), the Stroop 
Test (46), and the Symbol Digit Test (SDT) Italian oral version 
(47) to evaluate attention and executive functions

 5. the Parkinson’s Disease Questionnaire (PDQ-39-IT) (48) to 
evaluate the perceived health-related quality of life

 6. the Modified Parkinson Activity Scale (MPAS) (49) and the 
TUG test (50) to evaluate functional mobility

 7. the 6-Minute Walking Test (6MWT) (51) to evaluate walking 
endurance; the test will be performed indoors along a 30 m 
corridor, following the American Thoracic Society 
guidelines (52)

 8. the Freezing Of Gait Questionnaire (FOG-Q) (53) to evaluate 
the frequency and duration of freezing episodes

 9. the Falls Efficacy Scale, Italian version (FES-I) (54) to evaluate 
the fear of falls in different situations of risk

 10. the fall questionnaire (55) to account for the number  
of falls

 11. the Numerical Rating Scale (NRS 0–10) (56) to evaluate 
current pain

 12. the modified Barthel Index (mBI) (57) to evaluate functional 
independence in the basic activities of daily living

At T1, participants will be also asked to rate their satisfaction with 
the treatment using a 5 Point Likert Scale (range: 1–5, where 5 
indicates a very high appreciation).

To avoid inter-rater variability, participants will be evaluated by 
the same rater (1–2: Neurologist or Physiatrist; 3–5: Neuropsychologist; 
6–12: Physiotherapist) at different time points. All scales will 
be repeated in the same version, except for MoCA, for whom parallel 
Italian versions are available (58).

2.4.2 Instrumental assessment
Instrument-assisted testing will be aimed at assessing postural 

sway and overground and treadmill gait. Blinded Physiotherapists will 
carry out an assessment through a force platform (AMTI 

FIGURE 1

Timing of clinical, instrumental, and biological assessments that will be performed in the VIRTREAD-PD study. Clinical, neuropsychological, and 
instrumental variables will be collected at baseline (T0), at the end of the treatment (T1), and 3  months after the end of treatment (T2). At 6  months after 
the end of treatment (T3) a phone interview will be performed. Image created with BioRender.com.
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OPT464508HF sampling at 1,000 Hz; AMTI, USA), the C-Mill, the 
Optogait and Witty systems (by Microgate, Italy).1

2.4.2.1 Postural sway
The postural sway will be  assessed by asking the patient to 

maintain standing statics with feet together while standing as still as 
possible in 6 different conditions (feet apart, feet together, feet in 
tandem position, both with eyes open and eyes closed) lasting 40 s. 
The assessment will be performed on the force platform and then 
again on C-Mill.

2.4.2.2 Overground gait
The overground gait parameters will be  evaluated using the 

Optogait system (Optogait, Microgate S.r.l., Bolzano, Italy) and two 
pairs of photocells (WITTY, Microgate Srl; Bolzano, Italy; 0.001-s 
accuracy), as reported in Figure  2. Optogait is an optical sensing 
system for kinematic gait analysis, consisting of a transmitter bar and 
a receiver bar. Between the two bars, there is a continuous light beam 
that is interrupted when the patient’s feet are interposed during gait. 
The system detects the dimensions of the patient’s foot and estimates 
the spatial/temporal gait parameters. Witty is a system composed of 
pairs of photocells that record elapsed split times when the subject 
crosses the line between the photocells. For the present study, we will 
use a 10-meter Optogait corridor with two pairs of photocells placed 
to demarcate the central 4 m of the corridor. Participants will be asked 
to walk through the corridor at self-selected walking speed (SSWS) 
and at high speed (HS, defined as the maximal speed that can be safely 
maintained for a short distance) (51). Three trials at each speed will 

1 http://www.optogait.com/Gait-Phases

be performed, with a brief rest between trials, and the mean values will 
be used for the statistical analysis. All variables will be measured from 
data recorded in the central 4 m of the corridor, to exclude the 
acceleration and deceleration periods at the start and end of walking 
phases, respectively, and thus measure representative steady-state 
walking data. The following gait parameters will be collected: mean 
speed, step and stride lengths, cadence and duration of stance, swing, 
and double-support phases.

2.4.2.3 Treadmill gait
At T1 and T2, all participants will perform the C-Gait test, a preset 

test of the C-Mill that includes 6 applications of AVR (stepping stones, 
obstacle mode, walking area, tandem, slalom, and tracks) interspersed 
with free walking phases. Some applications will be  among those 
exercised by the experimental group during the training and others 
will be new to participants in this group as well. The C-Gait report 
provides indications regarding the kinematics during different AVR 
applications and the success rate of the test.

2.4.3 Biological procedures
Biological samples will be collected at T0 and T1 using serum 

separation tubes. Forty-five minutes after the blood draw, samples will 
be separated using centrifugation at 2,500 × g for 10 min. Then serum 
will be aliquoted in cryogen micro vials and stored at −20°C until 
transfer in dry ice to the LABION, where the analysis will take place.

Serum samples will be used to quantify NfL using the automated 
immunoassay platform Ella (ProteinSimple, Bio-Techne, MN, USA). 
Human NF-L Simple Plex assay will be  used following the 
manufacturers’ instructions. A single well will be used for each sample 
as triplicates assays are automatically performed in Simple Plex assay 
microfluidic platform.

FIGURE 2

Schematic representation of the setting planned for the overground gait assessment that includes the optical sensing system Optogait and a 10-m 
Optogait corridor with two pairs of photocells placed to demarcate the central 4  m of the corridor. Image created with BioRender.com.
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For cEV isolation, after thawing, serum will be centrifuged at 
10,000 × g for 10 min. Then, cEVs will be isolated by size exclusion 
chromatography (SEC) using commercial columns (qEV single Gen2, 
70 nm, Izon Science Limited, Christchurch, New  Zealand) and 
Automatic Fraction Collector (AFC, Izon Science Limited). Following 
the manufacturer’s instructions, 150 μl of serum will be loaded onto 
the SEC column and cEVs containing fractions will be retained after 
elution. cEV suspension will be  then concentrated by 
ultracentrifugation (100,000 ×  g for 70 min; L7-65; Rotor SW60; 
Beckman Coulter, Brea, CA, USA) at 4°C. cEVs will be characterized 
in agreement with ISEV guidelines (54) by nanoparticle tracking 
analysis (NTA; NanoSight NS300, Malvern Panalytical, Malvern, UK) 
and western blot analysis.

Immunoblotting will be performed to characterize cEVs. Briefly, 
cEV concentrated suspensions from T0 and T1 samples will 
be obtained by pooling together specimens from multiple subjects. 
Lysis of cEVs will be  performed by sonication, then proteins 
re-suspended in SDS sample buffer protease inhibitors will be loaded 
on the electrophoresis gel under reducing conditions. Proteins will 
be transferred to nitrocellulose membrane and antigens will be probed 
with primary antibodies specific for cEV protein markers followed by 
incubation with secondary antibodies conjugated with HRP.

For the Raman analysis, a previously optimized protocol will 
be  followed (34). In brief, cEVs from T0 and T1 samples will 
be analyzed by means of a Raman micro-spectroscope (LabRAM 
Aramis, Horiba Jobin Yvon S.A.S, Lille, France). 5 μL of cEVs 
concentrated suspension will be  lied onto a calcium fluoride slide 
(Crystran, Poole, UK). Spectra will be acquired on the air-dried drop 
with a 532 nm laser line in the spectral ranges 600–1,800 cm−1 and 
2,600–3,200 cm−1, with the following acquisition settings: 50× 
objective, 1,800 grooves/mm diffraction grating, 400 μm entrance slit, 
confocal mode (600 μm pinhole). Instrument calibration will 
be performed using Silicon reference peak at 520.7 cm−1. Labspec6 and 
Origin2023b (OriginLab Corporation, Northampton, MA, USA) will 
be  used for Raman spectra acquisition, post-processing, and 
data analysis.

Biological procedures referred to cEV analysis are shown in 
Figure 3.

2.5 Interventional protocol

Intervention in both groups will be performed using the Motek’s 
C-Mill, with three sessions of treadmill training per week, every day 
at the same time during the “on” period of the participant, for 8 weeks. 
Participants will be encouraged to avoid using the side support bars 
during training, but a brief period (15-min) of familiarization with the 
task, during which intermittent support on the bars will be allowed, 
will be conducted during the first three sessions before starting the 
training. For all subjects, the training will be  customized and 
progressive in gait speed and duration; for the experimental group, the 
difficulty of AVR applications will also gradually increase. The 
progression will be based on the participant’s level of performance, but 
will follow fixed predetermined rules. In detail, gait speed will be set 
at 80% of the individual’s overground walking speed at the beginning 
of training, and will be weekly increased by 10% to a maximum of 
120% of that speed; at the beginning of training, the training duration 
will be 25 min, including 5 slots of exercise lasting 5 min, with a 4-min 
rest between each slot; every 2 weeks it will be increased by 1 min per 
slot, until a maximal duration of 45 min in the last 2 weeks of 
treatment. However, the progression will be applied considering the 
subject’s tolerance, i.e., the ability to keep the heart rate within safety 
limits and without subjective discomfort, and to walk without having 
to brace on the side bars.

Participants assigned to the experimental group will exercise five 
AVR applications (one for each slot of training): “nature island,” 
“stepping stones,” “walking area,” “obstacles avoidance,” and “tracks.” 
These applications train balance and changes in walking speed, 
promote gait adaptation strategies and strategies to overcome freezing 
of gait, in a safe and controlled environment; moreover, information 
to promote proper walking is provided, including feedback on gait 
parameters such as stride length, cadence and symmetry. Five 
difficulty levels will be prepared for each C-Mill application, with 
transition between levels set at a success rate of 80%.

In case of discontinuation of treatment (one or more sessions 
missed), the treatment will be  restarted with the gait speed, trial 
duration, and, for the experimental group, level of difficulty used in 
the last completed session. During treatment, the participants’ heart 

FIGURE 3

Schematic representation of the sequential events required for the biological procedures: after the recruitment of subjects, blood withdrawal and 
serum separation will be performed. Serum will be frozen and stored until subsequent cEVs isolation by size exclusion chromatography and 
ultracentrifugation. cEVs successful isolation will be verified with standard procedure prior to biochemical characterization by Raman spectroscopy 
using a calcium fluoride substrate and green laser line. Raman spectra will be analyzed and correlated with clinical data. Image created with BioRender.
com.
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rate (HR) will be measured with a chest-band device; in case the heart 
rate exceeds the safety threshold (75% of HR max, calculated as 
220-age for males and 200-age for females), the treadmill speed will 
be lowered until parameter normalization.

Pharmacological therapy is requested to be stable until the end of 
the intervention to minimize the effect of external factors on motor, 
functional, cognitive performances, and biological measures.

2.6 Outcome measures

The primary outcome is the difference in gait performance 
assessed by the POMA-G scale between the TT+AVR and the TT 
group at T1. The secondary outcomes are differences in mobility 
(measured by POMA-G at T2 and POMA-B at T1 and T2), in 
kinematic gait parameters assessed at T1 and T2, measured by the 
Optogait system, differences in other motor and non-motor symptoms 
at T1and T2, patients’ satisfaction, assessed with a 5-point Likert scale, 
and adherence to the treatment.

Exploratory outcome measures include changes in NfL 
concentration and change in individual Raman spectra of blood-
derived cEVs before and after treatment. The correlation between 
Raman spectra of blood cEVs and the rehabilitation outcome will 
be assessed (the biological characterization of patients at T0 analyzing 
cEVs performed by Raman Spectroscopy will provide numerical 
scores that will be correlated with motor parameters obtained after 
treatment to identify prognostic biomarkers of rehabilitation outcome).

2.7 Data collection and data analysis

2.7.1 Data collection
All clinical data will be collected in the clinical report form (paper 

CRF). These data will be entered anonymously into a computerized 
database using REDCap (Research Electronic Data Capture) (59), a 
web application for building and managing research databases. The 
use of a dedicated tool is suitable for robust data collection, data 
quality checks, and limiting missing data. All the users will have 
private access to the database with personal credentials and dedicated 
roles. Each patient will be associated with a reference ID and the 
correspondence between the patient’s name and the associated ID will 
be stored in a secure external file, to which only clinicians involved in 
patients’ assessment will have access.

Instrumental data on postural sway and gait analysis will be stored 
in a computer with restricted access for the personnel dedicated to the 
analysis of these data. Gait parameters collected using C-Mill in 
C-Gait mode will be stored in the computer connected to the C-Mill 
system, which also has restricted access to the staff involved. Biological 
samples collected at IRCCS Don Carlo Gnocchi in Florence will 
be sent for analysis, after anonymization, to the LABION at IRCCS 
Fondazione Don Carlo Gnocchi in Milan.

2.7.2 Data analysis
Statistical analysis will be conducted using the software SPSS v28 

(Armonk, NY: IBM Corp). The distribution will be assessed using the 
Kolmogorov–Smirnov test for all clinical and instrumental continuous 
data, assuming the presence of normal distribution when p > 0.05. 
Data will then be  summarized as mean and standard deviation, 

median and interquartile range, or absolute and percentage frequency, 
as appropriate.

The experimental and the control groups will be compared at 
baseline to explore significant differences in demographic, clinical, 
and instrumental variables. Parametric or non-parametric tests will 
be used for continuous variables, according to data distribution. The 
chi-square test will be  used to compare distributions of binary/
categorical variables.

Both within and between-group analyses will be conducted to 
assess at each time point the effects of the treatments delivered, for 
primary and secondary outcome measures. Specifically, a two-way 
repeated measures ANOVA will be used with a within-factor (time of 
assessment) and a between-factor (group).

Regarding biological data, the acquired Raman spectra will 
be analyzed by multivariate Principal Component Analysis – Linear 
Discriminant Analysis (PCA-LDA) classification. PCA will reduce the 
number of variables into principal components, which will be used to 
build the LDA model. The model will be built to discriminate clinical 
improvement detected as quantifiable change on clinical scales, 
defined based on the minimum clinically important difference, when 
available from the literature. The sensitivity, specificity, and accuracy 
of the predicting model based on spectra data will be assessed. In 
addition, correlation analysis will be  conducted to evaluate the 
association between spectral data and change on clinical scales 
recorded between the treatment’s beginning and end. Statistical 
analysis of the Raman data will be  performed using Origin2023b 
(OriginLab Corporation, Northampton, MA, USA) (34).

Univariate analysis models will be  used to select the best 
prognostic markers of clinical improvement to be  included in a 
multivariate model.

For all analyses, statistical significance will be set at p < 0.05.

3 Discussion

In this study, we propose to compare the effects of TT+AVR and 
TT, delivered according to a customized progressive rehabilitation 
protocol, on gait and other motor and non-motor symptoms in 
patients with II-III stage PD and gaits disturbance, testing NfL and 
cEVs as biomarkers of neuroplasticity and prognostic biomarkers, 
respectively.

As to the definition of the primary outcome, we searched for a 
validated and recommended clinical measure of gait that could 
be  easily collectable in all clinical settings, and, following the 
Parkinson EDGE Task Force Recommendations (60, 61) and 
according to the literature (62, 63), we chose to use the POMA as the 
primary measure to assess gait and balance. POMA scale has the 
advantage of testing both gait and balance providing separate scores 
for each variable of interest.

However,. although largely used, this scale estimate only basic gait 
parameters (i.e., speed), not providing information on the pattern or 
quality of the movement. Also, it has been reported to have low 
sensitivity, and to be influenced by instruction and tester bias (62). For 
these considerations, in order to capture the gist of individual gait 
changes associated with disease progression or with different 
rehabilitation programs, we decided to include a series of kinematic 
parameters, detectable using Optogait, as also recommended for 
research in PD rehabilitation (3). Indeed, pooled data from a recent 
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metanalysis show a moderately large effect on gait speed in favor of 
TT when compared with no exercise or sham treatment in PD (9). 
This result has been replicated in a more recent systematic review with 
network meta-analysis, according to which TT resulted more effective 
compared to control in improving gait speed and walking distance, 
highlighting that the body weight support-TT is superior compared 
to control and many exercise types in improving gait speed, walking 
distance, balance and motor symptoms (64). In this regard, gait speed, 
although not specific to PD assessment (3), has been described as 
“almost the perfect measure” (65) since it is a reliable and sensitive 
measure that correlates with functional ability and balance confidence. 
This evidence suggests the importance of including measures of 
walking speed in the motor assessment together with other spatial–
temporal parameters, such as cadence and step length, to correctly 
interpret the quality of gait. The same considerations apply for the 
assessment of balance by the POMA-B, this is why we have introduced 
the postural sway assessment by using the force platform.

A recent systematic review (66) found a very high variability in 
the distance adopted to measure gait parameters in PD, that ranged 
from 1.4 to 100 m, with about 22% of studies that used short (up to 
6 m) distances. In the present study, the choice of a 4 m distance is also 
due to technical constraints. We will use a 10-m Optogait corridor, in 
which two cross bars need to be placed at the beginning and end of 
the corridor; therefore, the subject should start walking within the 
corridor and stop before passing the final bar. To measure parameters 
during steady-state walking, the data from the initial 3 m (acceleration) 
and final 3 m (deceleration) must be eliminated, and only the middle 
4 m are available for measurement. However, we will record three 
trials for each speed, taking the average for all analyses. Both features 
(recording the steady-state walk and averaging between three trials) 
should yield representative measures of the subject’s walk.

In addition to measuring gait parameters along a short distance, 
we  also chose the 6MWT as a test to assess aerobic capacity/
endurance. This test has been validated in PD (51).

Still referring to the walking and balance assessment, attention must 
be paid to the C-Gait. This innovative test allows for recording data 
during different AVR applications to detect specific gait dysfunction. 
The C-Gait allows to distinguish between people with FOG and those 
without, outperforming traditional walking tests, being obstacle 
avoidance and speed of adaptation items suggestive of FOG with high 
sensitivity (67). C-Gait assessment will be performed at T1 e T2 in both 
the control and experimental groups to assess whether performances on 
gait adaptability are superior in the experimental group and whether 
this gap is maintained at 3-month follow-up.

As to the other clinical measures, we chose the MDS-UPDRS part 
III to assess motor symptoms severity. Then, we  selected a set of 
questionnaires and performance tests according to the “European 
Physiotherapy Guideline for Parkinson’s Disease” recommendations 
(68). Since the importance of tracking falls in PD due to their 
frequency and consequences on everyday activities, fear of falling, and 
QoL (69–72), we included the fall questionnaire, ensuring to report 
the number of falls, modality, and related consequences, together with 
the FES-I questionnaire, to evaluate fear of falling. The incident rate 
of falls over 6 months after the end of treatment will be compared with 
those referred to the 6 months before the rehabilitation treatment.

In the same way, FOG is a common (63% of PD patients have 
FOG) and complex gait disorder in PD that frequently causes falls and 

falls-related anxiety, both of which lower QoL and functional 
independence, cause shame and dissatisfaction promoting social 
stigmatization and disability (73–75). Thus, in order to assess this 
symptom, we  included in the tests’ battery the FOG-Q, the only 
validated tool available to subjectively assess the severity and 
frequency of FOG (76).

To assess the level of functional mobility the TUG and the MPAS 
have been selected according to the literature (77). The TUG has the 
advantage of testing three anchors of functional mobility (gait, 
balance, and transfers), and provides also indirect estimation of the 
risk of falls; however, it assesses the patient’s capacity in a neutral 
setting, rather than performance in daily living activities. For this 
reason, we adopted the MPAS, a scale specifically designed to evaluate 
functional gait, balance and transfers through different scenarios in 
daily activities. The major limitation of MPAS is the number of 
accessories, space, and time needed to perform the test which may not 
be practical or feasible in all centers.

Pain is a frequent non-motor symptom in PD, contributing 
significantly to disability and reduced QoL. It affects around 67.6% of 
PD patients versus 15–30% of the general population. The most 
frequent pain syndromes in PD are musculoskeletal pain, neuropathic 
radicular pain, dystonia-related pain, akathitic discomfort, and 
primary central parkinsonian pain (78). Among clinical scales suitable 
to assess pain intensity, the NRS scale is simple, well-validated, and 
easy to use for clinicians and to understand for patients. The NRS is a 
recommended tool for assessing pain intensity in the general 
population and is widely used also in PD, although it is cautiously 
recommended in this population because it is not disease-specific (78).

Experience appreciation will be  estimated for both treatment 
groups using a 5-point Likert scale and correlated with the level of 
adherence to the treatment. Indeed, independently of the effectiveness 
on motor symptoms, results coming from previous studies suggest a 
higher appreciation of VR training by the patients compared to the 
conventional TT which is perceived as monotonous or boring, and 
less useful to integrate into their daily life environment (79–81). Thus, 
satisfaction will be  tested to confirm these findings. Along with 
adherence to either treatment, and to the evaluation of the possibly 
different clinical and instrumental effect of either intervention, this 
measure can provide relevant information on potential barriers and 
motivators for exercise and rehabilitation. Indeed, as to accessibility 
to these services, while the TT is currently available in most 
rehabilitation facilities, TT associated to AVR is more expensive and 
less available. As to motivators, AVR is claimed to be  a relevant 
motivator (14): our study will allow us to investigate this issue, by 
allowing a comparison of both adherence and patients’ satisfaction in 
either intervention. Thus, our study may provide highly relevant 
information about the superiority of TT + AVR versus TT, to 
potentially provide grounds to expand the adoption of TT + AVR 
instruments, even if this may be associated to generally higher costs.

According to multidimensional bio-psycho-social assessment and 
approach recommended by the International Classification of 
Functioning, Disability and Health (ICF), and the strict 
interconnection between motor, psychological, cognitive functions 
and QoL in PD, the present VIRTREAD-PD protocol includes also an 
extensive psychological and neuropsychological assessment (82–84).

Several studies demonstrated the positive effect of both specific 
and non-specific physical activity on cognitive functions in PD, 
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especially on executive functions (85–87). Recently Pelosin et al. (79) 
showed how a longer TT with VR, up to 12 weeks, improves not only 
motor but also executive functions, visuospatial ability, and attention. 
On the other side, the baseline cognitive status, specifically memory 
impairment, seems to influence the response to gait rehabilitation in 
PD (88). For these reasons, a feasible yet exhaustive clinical 
neuropsychological assessment is mandatory in the development of a 
rehabilitation program. In the present study, the MOCA and the 
PD-CRS were chosen among Level I cognitive assessments proposed 
by Litvan et al. (89) to identify Mild Cognitive Impairment (MCI) in 
PD. The PD-CRS was preferred to the Scales for Outcomes in 
Parkinson’s Disease-COGnition (SCOPA-Cog), because it assesses 
both frontal-subcortical functions (i.e., sustained attention, working 
memory, alternating and action verbal fluencies, clock drawing, and 
immediate and delayed free-recall verbal memory) and instrumental-
cortical functions (i.e., confrontation naming, copying a clock). 
PD-CRS further overcomes the limitations of Level II 
neuropsychological assessment, not always applicable in clinical 
settings for PD patients who are more likely to have attentive lability 
and fatigue (44). PD-CRS ultimately allows to discriminate between 
cognitively intact PD patients and PD patients with MCI or dementia, 
and between the latter (90).

Moreover, since not only motor but also cognitive differences in 
PD subtypes may influence motor performances and PD rehabilitation 
outcomes (91), this prompted researchers to advocate for cognitive 
testing as an essential component of the VIRTREAD-PD protocol, to 
investigate whether cognitive features at baseline may influence the 
trajectory of recovery across the study’s timepoints.

The effect of physical activity on depression and QoL in healthy 
aging and in PD has been widely documented; in detail, aerobic 
training exercise significantly improved the scores not only on the 
MDS-UPDRS, but also on the BDI, and the QoL scales (83). 
Accordingly, in the present protocol, we  included measures of 
depression and of QoL, to explore whether TT+AVR could affect also 
these psychological variables. The described multidimensional 
approach will allow for an in-depth study of the aspects inherent in 
the interaction between the motor and cognitive spheres. Indeed, 
rehabilitation is an active procedure that at a cellular level involves 
neuroplasticity mechanisms (8) and that at an individual level requires 
the ability to follow, understand, and recall precise instructions 
involving motor learning processes.

Indeed, due to experience-dependent neuroplasticity, 
exercises that combine aerobic activity with goal-based training 
have the potential to enhance both the cognitive and automatic 
components of motor control in people with mild to moderate 
stages of the disease (92). Moreover, innovative training targeting 
cognitive components of complex motor actions (ie multitask 
conditions) enables functional gait improvement (23). The 
process by which this kind of training improves walking ability 
is mainly guided by the activation of compensatory cortical 
mechanisms such as increased attention and use of visual cues, 
linked to motor learning processes (93). Since in similar previous 
randomized clinical trials biological data has not been collected 
or not analyzed with the intent to find biomarkers of 
neurorehabilitation, a major innovation of VIRTREAD-PD 
protocol is the inclusion of NfL quantification and cEVs analysis 
through Raman spectroscopy. NfL are now attracting considerable 

attention as biomarkers of axonal damage and neurodegeneration, 
as well as biomarkers of therapy effectiveness that could represent 
an objective complement to other process of measuring clinical 
outcomes (94) thanks to the availability of robust automatable 
assays for their quantification (95, 96). On the contrary, the 
analysis of cEVs represents a major innovation in the present 
protocol. Indeed, cEVs include multiple subpopulations of EVs 
released by all body cells, including those released by neurons 
and glial cells (97). It was already demonstrated their major 
involvement in the reparative mechanisms occurring in the brain 
after a lesion (98, 99), but the complex composition of cEVs, their 
heterogeneity, their nanoscale dimensions and the laborious 
isolation and characterization methods have currently limited 
their application in a clinical scenario. Nonetheless, Raman 
spectroscopy can represent a turning point in the use of cEVs in 
clinics, allowing to condense in a continuous variable, 
information coming from multiple molecular compounds. This 
method has been already utilized in PD for diagnostic purposes, 
revealing abnormalities in the plasma spectroscopic fingerprint 
compared to healthy controls (100) as well as in the discrimination 
of people with PD from control subjects by means of cEV Raman 
fingerprint (34). Although PD may be diagnosed clinically with 
a high degree of confidence, predicting its progression rate 
remains difficult since the condition is clinically heterogeneous 
and an objective marker indicative of cumulative disability and 
of the recovery following treatment is currently lacking. 
Biological signatures obtained utilizing this method for patient 
stratification before and after treatment could solve this currently 
unmet need. Indeed, rehabilitation recovery involves a plethora 
of complex biological mechanisms that include neuroplasticity, 
brain remodeling, and brain-muscle communication (101) that 
can be  collectively monitored by exploiting the Raman 
cEV profile.

Concerning treatment, the main innovation in VIRTREAD-PD 
is the use of the TT+AVR. As in Mirelman (24), we structured an 
incremental protocol for the time and duration of 5 walking slots 
in the rehabilitation sessions. In order to administer treatments 
tailored to the performance of the individuals involved in the 
study, training progression was planned in line with a predefined 
progression plan. Due to the intimate association between motor 
performances and attentive/executive functioning in PD and as 
suggested by previous research (23), we  included the “obstacle 
avoidance” task among the AVR applications, targeting the “motor-
cognitive interactions,” to improve gait performances and reduce 
fall risk. Duration and frequency of training are planned as 
reported in the literature as effective on gait and balance (ranging 
from 4 to 8  weeks, including 12–20 sessions) (11, 17). In 
conclusion, this study will compare the effects of 2 rehabilitation 
protocols on motor symptoms in PD. To our knowledge, this is the 
first randomized controlled study specifically designed to enroll 
only PD patients where the effect of conventional TT is compared 
with that of TT with AVR applications. Innovative elements and 
strength points of the protocol are represented by a 
multidimensional approach using both clinical and instrumental 
assessments, the predefinition of an algorithm for treatment 
customization, and the application of an innovative method to 
explore potential biomarkers of neuroplasticity and potential 
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prognostic biomarkers. The results of this study will provide new 
insight to personalize and possibly optimize the effects of 
technological rehabilitation for PD patients.
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