1,979 research outputs found

    Scanning-probe spectroscopy of semiconductor donor molecules

    Full text link
    Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages, 3 figures, 5 supplementary figure

    Determination of an optimal response cut-off able to predict progression-free survival in patients with well-differentiated advanced pancreatic neuroendocrine tumours treated with sunitinib: an alternative to the current RECIST-defined response.

    Get PDF
    BACKGROUND: Sunitinib prolongs progression-free survival (PFS) in patients with advanced pancreatic neuroendocrine tumours (pNET). Response Evaluation Criteria in Solid Tumors (RECIST)-defined partial responses (PR; classically defined as ⩾30% size decrease from baseline) are infrequent. METHODS: Individual data of pNET patients from the phase II [NCT00056693] and pivotal phase III [NCT00428597] trials of sunitinib were analysed in this investigator-initiated, post hoc study. The primary objective was to determine the optimal RECIST (v.1.0) response cut-off value to identify patients who were progression-free at 11 months (median PFS in phase III trial); and the most informative time-point (highest area under the curve (AUC) by receiver operating characteristic (ROC) analysis and logistic regression) for prediction of benefit (PFS) from sunitinib. RESULTS: Data for 237 patients (85 placebo; 152 sunitinib (n=66.50 mg \u274-weeks on/2-weeks off\u27 schedule; n=86 \u2737.5 mg continuous daily dosing (CDD)\u27)) and 788 scans were analysed. The median PFS for sunitinib and placebo were 9.3 months (95% CI 7.6-12.2) and 5.4 months (95% CI 3.5-6.01), respectively (hazard ratio (HR) 0.43 (95% CI 0.29-0.62); P CONCLUSIONS: A 10% reduction within marker lesions identifies pNET patients benefiting from sunitinib treatment with implications for maintenance of dose intensity and future trial design

    SN 2005hj: Evidence for Two Classes of Normal-Bright SNe Ia and Implications for Cosmology

    Get PDF
    HET Optical spectra covering the evolution from about 6 days before to about 5 weeks after maximum light and the ROTSE-IIIb unfiltered light curve of the "Branch-normal" Type Ia Supernova SN 2005hj are presented. The host galaxy shows HII region lines at redshift of z=0.0574, which puts the peak unfiltered absolute magnitude at a somewhat over-luminous -19.6. The spectra show weak and narrow SiII lines, and for a period of at least 10 days beginning around maximum light these profiles do not change in width or depth and they indicate a constant expansion velocity of ~10,600 km/s. We analyzed the observations based on detailed radiation dynamical models in the literature. Whereas delayed detonation and deflagration models have been used to explain the majority of SNe Ia, they do not predict a long velocity plateau in the SiII minimum with an unvarying line profile. Pulsating delayed detonations and merger scenarios form shell-like density structures with properties mostly related to the mass of the shell, M_shell, and we discuss how these models may explain the observed SiII line evolution; however, these models are based on spherical calculations and other possibilities may exist. SN 2005hj is consistent with respect to the onset, duration, and velocity of the plateau, the peak luminosity and, within the uncertainties, with the intrinsic colors for models with M_shell=0.2 M_sun. Our analysis suggests a distinct class of events hidden within the Branch-normal SNe Ia. If the predicted relations between observables are confirmed, they may provide a way to separate these two groups. We discuss the implications of two distinct progenitor classes on cosmological studies employing SNe Ia, including possible differences in the peak luminosity to light curve width relation.Comment: ApJ accepted, 31 page

    The DISC1 Pathway Modulates Expression of Neurodevelopmental, Synaptogenic and Sensory Perception Genes

    Get PDF
    Genetic and biological evidence supports a role for DISC1 across a spectrum of major mental illnesses, including schizophrenia and bipolar disorder. There is evidence for genetic interplay between variants in DISC1 and in biologically interacting loci in psychiatric illness. DISC1 also associates with normal variance in behavioral and brain imaging phenotypes.Here, we analyze public domain datasets and demonstrate correlations between variants in the DISC1 pathway genes and levels of gene expression. Genetic variants of DISC1, NDE1, PDE4B and PDE4D regulate the expression of cytoskeletal, synaptogenic, neurodevelopmental and sensory perception proteins. Interestingly, these regulated genes include existing targets for drug development in depression and psychosis.Our systematic analysis provides further evidence for the relevance of the DISC1 pathway to major mental illness, identifies additional potential targets for therapeutic intervention and establishes a general strategy to mine public datasets for insights into disease pathways

    Bunyavirus requirement for endosomal K+ reveals new roles of cellular ion channels during infection

    Get PDF
    In order to multiply and cause disease a virus must transport its genome from outside the cell into the cytosol, most commonly achieved through the endocytic network. Endosomes transport virus particles to specific cellular destinations and viruses exploit the changing environment of maturing endocytic vesicles as triggers to mediate genome release. Previously we demonstrated that several bunyaviruses, which comprise the largest family of negative sense RNA viruses, require the activity of cellular potassium (K+) channels to cause productive infection. Specifically, we demonstrated a surprising role for K+ channels during virus endosomal trafficking. In this study, we have used the prototype bunyavirus, Bunyamwera virus (BUNV), as a tool to understand why K+ channels are required for progression of these viruses through the endocytic network. We report three major findings: First, the production of a dual fluorescently labelled bunyavirus to visualize virus trafficking in live cells. Second, we show that BUNV traffics through endosomes containing high [K+] and that these K+ ions influence the infectivity of virions. Third, we show that K+ channel inhibition can alter the distribution of K+ across the endosomal system and arrest virus trafficking in endosomes. These data suggest high endosomal [K+] is a critical cue that is required for virus infection, and is controlled by cellular K+ channels resident within the endosome network. This highlights cellular K+ channels as druggable targets to impede virus entry, infection and disease

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots

    Get PDF
    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon

    Epigenome Microarray Platform for Proteome-Wide Dissection of Chromatin-Signaling Networks

    Get PDF
    Knowledge of protein domains that function as the biological effectors for diverse post-translational modifications of histones is critical for understanding how nuclear and epigenetic programs are established. Indeed, mutations of chromatin effector domains found within several proteins are associated with multiple human pathologies, including cancer and immunodeficiency syndromes. To date, relatively few effector domains have been identified in comparison to the number of modifications present on histone and non-histone proteins. Here we describe the generation and application of human modified peptide microarrays as a platform for high-throughput discovery of chromatin effectors and for epitope-specificity analysis of antibodies commonly utilized in chromatin research. Screening with a library containing a majority of the Royal Family domains present in the human proteome led to the discovery of TDRD7, JMJ2C, and MPP8 as three new modified histone-binding proteins. Thus, we propose that peptide microarray methodologies are a powerful new tool for elucidating molecular interactions at chromatin

    Essential Functions of the Histone Demethylase Lid

    Get PDF
    Drosophila Little imaginal discs (Lid) is a recently described member of the JmjC domain class of histone demethylases that specifically targets trimethylated histone H3 lysine 4 (H3K4me3). To understand its biological function, we have utilized a series of Lid deletions and point mutations to assess the role that each domain plays in histone demethylation, in animal viability, and in cell growth mediated by the transcription factor dMyc. Strikingly, we find that lid mutants are rescued to adulthood by either wildtype or enzymatically inactive Lid expressed under the control of its endogenous promoter, demonstrating that Lid's demethylase activity is not essential for development. In contrast, ubiquitous expression of UAS-Lid transgenes lacking its JmjN, C-terminal PHD domain, and C5HC2 zinc finger were unable to rescue lid homozygous mutants, indicating that these domains carry out Lid's essential developmental functions. Although Lid-dependent demethylase activity is not essential, dynamic removal of H3K4me3 may still be an important component of development, as we have observed a genetic interaction between lid and another H3K4me3 demethylase, dKDM2. We also show that Lid's essential C-terminal PHD finger binds specifically to di- and trimethylated H3K4 and that this activity is required for Lid to function in dMyc-induced cell growth. Taken together, our findings highlight the importance of Lid function in the regulated removal and recognition of H3K4me3 during development

    Pretreatment metabotype as a predictor of response to sertraline or placebo in depressed outpatients: a proof of concept

    Get PDF
    The purpose of this study was to determine whether the baseline metabolic profile (that is, metabotype) of a patient with major depressive disorder (MDD) would define how an individual will respond to treatment. Outpatients with MDD were randomly assigned to sertraline (up to 150 mg per day) (N=43) or placebo (N=46) in a double-blind 4-week trial. Baseline serum samples were profiled using the liquid chromatography electrochemical array; the output was digitized to create a ‘digital map' of the entire measurable response for a particular sample. Response was defined as ⩾50% reduction baseline to week 4 in the 17-item Hamilton Rating Scale for Depression total score. Models were built using the one-out method for cross-validation. Multivariate analyses showed that metabolic profiles partially separated responders and non-responders to sertraline or to placebo. For the sertraline models, the overall correct classification rate was 81% whereas it was 72% for the placebo models. Several pathways were implicated in separation of responders and non-responders on sertraline and on placebo including phenylalanine, tryptophan, purine and tocopherol. Dihydroxyphenylacetic acid, tocopherols and serotonin were common metabolites in separating responders and non-responders to both drug and placebo. Pretreatment metabotypes may predict which depressed patients will respond to acute treatment (4 weeks) with sertraline or placebo. Some pathways were informative for both treatments whereas other pathways were unique in predicting response to either sertraline or placebo. Metabolomics may inform the biochemical basis for the early efficacy of sertraline
    corecore