13 research outputs found

    Organometallic neptunium(III) complexes

    Get PDF
    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal–ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements

    Actinide covalency measured by pulsed electron paramagnetic resonance spectroscopy

    Get PDF
    Our knowledge of actinide chemical bonds lags far behind our understanding of the bonding regimes of any other series of elements. This is a major issue given the technological as well as fundamental importance of f-block elements. Some key chemical differences between actinides and lanthanides—and between different actinides—can be ascribed to minor differences in covalency, that is, the degree to which electrons are shared between the f-block element and coordinated ligands. Yet there are almost no direct measures of such covalency for actinides. Here we report the first pulsed electron paramagnetic resonance spectra of actinide compounds. We apply the hyperfine sublevel correlation technique to quantify the electron-spin density at ligand nuclei (via the weak hyperfine interactions) in molecular thorium(III) and uranium(III) species and therefore the extent of covalency. Such information will be important in developing our understanding of the chemical bonding, and therefore the reactivity, of actinides

    Inorganic Niobium and Tantalum Octahedral Cluster Halide Compounds with Three-dimensional Frameworks: A Review on their Crystallographic and Electronic Structures

    No full text
    International audienceThis review summarizes the development of the rich crystal and bonding chemistry of face-capped and edge-bridged inorganic niobium and tantalum octahedral cluster halide compounds, with a particular emphasis on those showing three-dimensional cluster frameworks. Discussion is made on varied structures and bonding which are intimately linked to the valence electron concentration, i.e., the number of electrons that held the octahedral metal cluster architecture. Exploration of the literature indicates that apart from Nb6I11 and derivatives, which show electron-deficient face-capped M6Xi8Xa6 units, compounds containing edge-bridged M6Xi12Xa6 motifs are the most largely encountered. Closed-shell compounds with a valence electron concentration of 16 are predominant, although a few 15-electron open-shell magnetic compounds or even 14-electron closed-shell species have also been reported. Particularly interesting from a structural point of view is the fashion in which these face-capped and edge-bridged clusters “pack” in crystals. The astonishing diversity of structural types, which are observed, is mainly due to the flexibility of the halogen ligands to coordinate in various manners to metal atoms. However, a rigorous structural analysis of these compounds reveals no close relationship between the valence electron concentration and the variability of the intercluster connections and/or the nature of the counterions. Indeed, the main bonding features of these compounds can be understood from the delocalized bonding picture of isolated “molecular-like” M6Xi8Xa6 or M6Xi12Xa6 clusters
    corecore