9 research outputs found

    Freezing of gait and fall detection in Parkinson’s disease using wearable sensors:a systematic review

    Get PDF
    Despite the large number of studies that have investigated the use of wearable sensors to detect gait disturbances such as Freezing of gait (FOG) and falls, there is little consensus regarding appropriate methodologies for how to optimally apply such devices. Here, an overview of the use of wearable systems to assess FOG and falls in Parkinson’s disease (PD) and validation performance is presented. A systematic search in the PubMed and Web of Science databases was performed using a group of concept key words. The final search was performed in January 2017, and articles were selected based upon a set of eligibility criteria. In total, 27 articles were selected. Of those, 23 related to FOG and 4 to falls. FOG studies were performed in either laboratory or home settings, with sample sizes ranging from 1 PD up to 48 PD presenting Hoehn and Yahr stage from 2 to 4. The shin was the most common sensor location and accelerometer was the most frequently used sensor type. Validity measures ranged from 73–100% for sensitivity and 67–100% for specificity. Falls and fall risk studies were all home-based, including samples sizes of 1 PD up to 107 PD, mostly using one sensor containing accelerometers, worn at various body locations. Despite the promising validation initiatives reported in these studies, they were all performed in relatively small sample sizes, and there was a significant variability in outcomes measured and results reported. Given these limitations, the validation of sensor-derived assessments of PD features would benefit from more focused research efforts, increased collaboration among researchers, aligning data collection protocols, and sharing data sets

    High-resolution synchrotron-based Fourier transform spectroscopy of CH317OH in the 120-350 cm-1 far-infrared region

    No full text
    The Fourier transform spectrum of the [image omitted] isotopologue of methanol has been recorded in the 120-350 cm-1 far-infrared region at a resolution of 0.00096 cm-1 using synchrotron source radiation at the Canadian Light Source. The study, motivated by astrophysical applications, is aimed at generating a sufficiently accurate set of energy level term values for the ground vibrational state to allow prediction of the centres of the quadrupole hyperfine multiplets for astronomically observable sub-millimetre transitions to within an uncertainty of a few MHz. To expedite transition identification, a new function was added to the Ritz program in which predicted spectral line positions were generated by an adjustable interpolation between the known assignments for the [image omitted] and [image omitted] isotopologues. By displaying the predictions along with the experimental spectrum on the computer monitor and adjusting the predictions to match observed features, rapid assignment of numerous [image omitted] sub-bands was possible. The least squares function of the Ritz program was then used to generate term values for the identified levels. For each torsion-K-rotation substate, the term values were fitted to a Taylor-series expansion in powers of J(J + 1) to determine the substate origin energy and effective B-value. In this first phase of the study we did not attempt a full global fit to the assigned transitions, but instead fitted the sub-band J-independent origins to a restricted Hamiltonian containing the principal torsional and K-dependent terms. These included structural and torsional potential parameters plus quartic distortional and torsion-rotation interaction terms

    Fourier transform synchrotron spectroscopy of torsional and CO-stretching bands of CH(3)(17)OH

    No full text
    The Fourier transform spectrum of the CH(3)(17)OH isotopologue of methanol has been recorded in the 65-1200 cm(-1) spectral region at a resolution of 0.00096 cm(-1) using synchrotron source radiation at the Canadian Light Source. Here we present an extension to higher torsional states of our investigation of the torsion-rotation transitions within the small-amplitude vibrational ground state, now including assignments of more than 16 500 lines involving quantum numbers in the ranges v(t) <= 3, J <= 30 and vertical bar K vertical bar <= 12, as well as a study of the strong CO-stretching band centered at 1020 cm(-1). Energy term values have been determined for assigned ground and CO-stretching levels by use of the Ritz program, and have been fitted to series expansions in powers of J(J + 1) to determine substate origins and effective B values. Several Fermi anharmonic and Coriolis level-crossing resonances coupling the CO stretch with high torsional ground-state levels have been identified and characterized. The study is motivated by astrophysical applications, with a principal aim being the compilation of an extensive set of energy term values to permit prediction of astronomically observable sub-millimetre transitions to within an uncertainty of a few MHz. (C) 2011 Elsevier Inc. All rights reserved

    FTIR and Raman Spectra Compared with Ab Initio Calculated Frequency Modes for 5-Aminouracil

    No full text
    Infrared (IR) and Raman spectra of 5-aminouracil were recorded in the region 200–4,000 cm − 1. Assuming under the Cs point group that the distribution of the normal mode of vibrations between the two species are planar (a′) and non-planar (a″), given by 25a′ + 11a″ of which 30 modes (21a′ + 9a″) correspond to the uracil moiety and six modes (4a′ + 2a″) correspond to the NH2 group, with a comparison of theoretically ab initio calculated frequencies, the results are in reasonably good agreement with the experimental IR and Raman spectra. Consistent assignments have been made for the internal modes of the NH2 group, especially for the anti-symmetric NH2 stretching and bending modes. The non-equivalence of the two NH bonds of the NH2 group suggests a difference in the strength of the two hydrogen bonds on the pyrimidine ring. Symmetry and anti-symmetry NH stretching modes of the NH2 group show the invalidity of the empirical relationship. These two NH2 stretching frequencies are distinctly separated from the CH/NH ring stretching frequencies. A strong and sharp IR band that acts at 3,380 cm − 1 could be identified as the anti-symmetric NH2 mode whereas the band at 3,290 cm − 1 smaller density could be identified as the symmetric NH2 stretching mode

    Photochemistry of Nucleic Acid Bases and Their Thio- and Aza-Analogues in Solution

    No full text

    Computational Modeling of Photoexcitation in DNA Single and Double Strands

    No full text
    The photoexcitation of DNA strands triggers extremely complex photoinduced processes, which cannot be understood solely on the basis of the behavior of the nucleobase building blocks. Decisive factors in DNA oligomers and polymers include collective electronic effects, excitonic coupling, hydrogen-bonding interactions, local steric hindrance, charge transfer, and environmental and solvent effects. This chapter surveys recent theoretical and computational efforts to model real-world excited-state DNA strands using a variety of established and emerging theoretical methods. One central issue is the role of localized vs delocalized excitations and the extent to which they determine the nature and the temporal evolution of the initial photoexcitation in DNA strands
    corecore