138 research outputs found

    Factors associated with severe dry eye in primary SjΓΆgrenΒ΄s syndrome diagnosed patients

    Get PDF
    Introduction Primary SjΓΆgren?s syndrome (pSS) is an autoimmune disease, characterized by lymphocytic infiltration of exocrine glands and other organs, resulting in dry eye, dry mouth and extraglandular systemic findings. Objective To explore the association of severe or very severe dry eye with extraocular involvement in patients diagnosed with primary SjΓΆgren?s syndrome. Methods SJOGRENSER registry is a multicenter cross-sectional study of pSS patients. For the construction of our main variable, severe/very severe dry eye, we used those variables that represented a degree 3?4 of severity according to the 2007 Dry Eye Workshop classification. First, bivariate logistic regression models were used to identify the effect of each independent variable on severe/very severe dry eye. Secondly, multivariate analysis using regression model was used to establish the independent effect of patient characteristics. Results Four hundred and thirty-seven patients were included in SJOGRENSER registry; 94% of the patients complained of dry eye and 16% developed corneal ulcer. Schirmer?s test was pathological in 92% of the patients; 378 patients presented severe/very severe dry eye. Inflammatory articular involvement was significantly more frequent in patients with severe/very severe dry eye than in those without severe/very severe dry eye (82.5 vs 69.5%, p = 0,028). Inflammatory joint involvement was associated with severe/very severe dry eye in the multivariate analysis, OR 2.079 (95% CI 1.096?3.941). Conclusion Severe or very severe dry eye is associated with the presence of inflammatory joint involvement in patients with pSS. These results suggest that a directed anamnesis including systemic comorbidities, such as the presence of inflammatory joint involvement or dry mouth in patients with dry eye, would be useful to suspect a pSS

    Cross-Talk between the Cellular Redox State and the Circadian System in Neurospora

    Get PDF
    The circadian system is composed of a number of feedback loops, and multiple feedback loops in the form of oscillators help to maintain stable rhythms. The filamentous fungus Neurospora crassa exhibits a circadian rhythm during asexual spore formation (conidiation banding) and has a major feedback loop that includes the FREQUENCY (FRQ)/WHITE COLLAR (WC) -1 and -2 oscillator (FWO). A mutation in superoxide dismutase (sod)-1, an antioxidant gene, causes a robust and stable circadian rhythm compared with that of wild-type (Wt). However, the mechanisms underlying the functions of reactive oxygen species (ROS) remain unknown. Here, we show that cellular ROS concentrations change in a circadian manner (ROS oscillation), and the amplitudes of ROS oscillation increase with each cycle and then become steady (ROS homeostasis). The ROS oscillation and homeostasis are produced by the ROS-destroying catalases (CATs) and ROS-generating NADPH oxidase (NOX). cat-1 is also induced by illumination, and it reduces ROS levels. Although ROS oscillation persists in the absence of frq, wc-1 or wc-2, its homeostasis is altered. Furthermore, genetic and biochemical evidence reveals that ROS concentration regulates the transcriptional function of WCC and a higher ROS concentration enhances conidiation banding. These findings suggest that the circadian system engages in cross-talk with the cellular redox state via ROS-regulatory factors

    Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia

    Get PDF
    Background: Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors contributing to its pathogenesis, although the mechanism is unknown due to the difficulties in accessing diseased tissue during human neurodevelopment. The aim of this study was to find neuronal differentiation genes disrupted in schizophrenia and to evaluate those genes in post-mortem brain tissues from schizophrenia cases and controls. Methods: We analyzed differentially expressed genes (DEG), copy number variation (CNV) and differential methylation in human induced pluripotent stem cells (hiPSC) derived from fibroblasts from one control and one schizophrenia patient and further differentiated into neuron (NPC). Expression of the DEG were analyzed with microarrays of post-mortem brain tissue (frontal cortex) cohort of 29 schizophrenia cases and 30 controls. A Weighted Gene Co-expression Network Analysis (WGCNA) using the DEG was used to detect clusters of co-expressed genes that werenon-conserved between adult cases and controls brain samples. Results: We identified methylation alterations potentially involved with neuronal differentiation in schizophrenia, which displayed an over-representation of genes related to chromatin remodeling complex (adjP = 0.04). We found 228 DEG associated with neuronal differentiation. These genes were involved with metabolic processes, signal transduction, nervous system development, regulation of neurogenesis and neuronal differentiation. Between adult brain samples from cases and controls there were 233 DEG, with only four genes overlapping with the 228 DEG, probably because we compared single cell to tissue bulks and more importantly, the cells were at different stages of development. The comparison of the co-expressed network of the 228 genes in adult brain samples between cases and controls revealed a less conserved module enriched for genes associated with oxidative stress and negative regulation of cell differentiation. Conclusion: This study supports the relevance of using cellular approaches to dissect molecular aspects of neurogenesis with impact in the schizophrenic brain. We showed that, although generated by different approaches, both sets of DEG associated to schizophrenia were involved with neocortical development. The results add to the hypothesis that critical metabolic changes may be occurring during early neurodevelopment influencing faulty development of the brain and potentially contributing to further vulnerability to the illness.We thank the patients, doctors and nurses involved with sample collection and the Stanley Medical Research Institute. This research was supported by either Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq #17/2008) and Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ). MM (CNPq 304429/2014-7), ACT (FAPESP 2014/00041-1), LL (CAPES 10682/13-9) HV (CAPES) and BP (PPSUS 137270) were supported by their fellowshipsinfo:eu-repo/semantics/publishedVersio

    The C. elegans H3K27 Demethylase UTX-1 Is Essential for Normal Development, Independent of Its Enzymatic Activity

    Get PDF
    Epigenetic modifications influence gene expression and provide a unique mechanism for fine-tuning cellular differentiation and development in multicellular organisms. Here we report on the biological functions of UTX-1, the Caenorhabditis elegans homologue of mammalian UTX, a histone demethylase specific for H3K27me2/3. We demonstrate that utx-1 is an essential gene that is required for correct embryonic and postembryonic development. Consistent with its homology to UTX, UTX-1 regulates global levels of H3K27me2/3 in C. elegans. Surprisingly, we found that the catalytic activity is not required for the developmental function of this protein. Biochemical analysis identified UTX-1 as a component of a complex that includes SET-16(MLL), and genetic analysis indicates that the defects associated with loss of UTX-1 are likely mediated by compromised SET-16/UTX-1 complex activity. Taken together, these results demonstrate that UTX-1 is required for many aspects of nematode development; but, unexpectedly, this function is independent of its enzymatic activity

    Genome-Wide Identification of Small RNAs in the Opportunistic Pathogen Enterococcus faecalis V583

    Get PDF
    Small RNA molecules (sRNAs) are key mediators of virulence and stress inducible gene expressions in some pathogens. In this work we identify sRNAs in the Gram positive opportunistic pathogen Enterococcus faecalis. We characterized 11 sRNAs by tiling microarray analysis, 5β€² and 3β€² RACE-PCR, and Northern blot analysis. Six sRNAs were specifically expressed at exponential phase, two sRNAs were observed at stationary phase, and three were detected during both phases. Searches of putative functions revealed that three of them (EFA0080_EFA0081 and EFB0062_EFB0063 on pTF1 and pTF2 plasmids, respectively, and EF0408_EF04092 located on the chromosome) are similar to antisense RNA involved in plasmid addiction modules. Moreover, EF1097_EF1098 shares strong homologies with tmRNA (bi-functional RNA acting as both a tRNA and an mRNA) and EF2205_EF2206 appears homologous to 4.5S RNA member of the Signal Recognition Particle (SRP) ribonucleoprotein complex. In addition, proteomic analysis of the Ξ”EF3314_EF3315 sRNA mutant suggests that it may be involved in the turnover of some abundant proteins. The expression patterns of these transcripts were evaluated by tiling array hybridizations performed with samples from cells grown under eleven different conditions some of which may be encountered during infection. Finally, distribution of these sRNAs among genome sequences of 54 E. faecalis strains was assessed. This is the first experimental genome-wide identification of sRNAs in E. faecalis and provides impetus to the understanding of gene regulation in this important human pathogen

    Corneal ulcerative disease in dogs under primary veterinary care in England: epidemiology and clinical management

    Get PDF
    Abstract Background Corneal ulcerative disease (CUD) has the potential to adversely affect animal welfare by interfering with vision and causing pain. The study aimed to investigate for the first time the prevalence, breed-based risk factors and clinical management of CUD in the general population of dogs under primary veterinary care in England. Results Of 104,233 dogs attending 110 clinics participating within the VetCompass Programme from January 1st to December 31st 2013, there were 834 confirmed CUD cases (prevalence: 0.80%, 95% confidence interval (CI) 0.75–0.86). Breeds with the highest prevalence included Pug (5.42%Β of the breed affected), Boxer (4.98%), Shih Tzu (3.45%), Cavalier King Charles Spaniel (2.49%) and Bulldog (2.41%). Purebred dogs had 2.23 times the odds (95% CI 1.84–2.87, P < 0.001) of CUD compared with crossbreds. Brachycephalic types had 11.18 (95% CI 8.72–14.32, P < 0.001) and spaniel types had 3.13 (95% CI 2.38–4.12, P < 0.001) times the odds for CUD compared with crossbreds. Pain was recorded in 385 (46.2%) cases and analgesia was used in 455 (54.6%) of dogs. Overall, 62 (7.4%) cases were referred for advanced management and CUD contributed to the euthanasia decision for 10 dogs. Conclusions Breeds such as the Pug and Boxer, and conformational types such as brachycephalic and spaniels, demonstrated predisposition to CUD in the general canine population. These results suggest that breeding focus on periocular conformation in predisposed breeds should be considered in order to reduce corneal disease
    • …
    corecore