49 research outputs found

    Bioprospecting Finds the Toughest Biological Material: Extraordinary Silk from a Giant Riverine Orb Spider

    Get PDF
    Background Combining high strength and elasticity, spider silks are exceptionally tough, i.e., able to absorb massive kinetic energy before breaking. Spider silk is therefore a model polymer for development of high performance biomimetic fibers. There are over 41.000 described species of spiders, most spinning multiple types of silk. Thus we have available some 200.000+ unique silks that may cover an amazing breadth of material properties. To date, however, silks from only a few tens of species have been characterized, most chosen haphazardly as model organisms (Nephila) or simply from researchers' backyards. Are we limited to ‘blindly fishing’ in efforts to discover extraordinary silks? Or, could scientists use ecology to predict which species are likely to spin silks exhibiting exceptional performance properties? Methodology We examined the biomechanical properties of silk produced by the remarkable Malagasy ‘Darwin's bark spider’ (Caerostris darwini), which we predicted would produce exceptional silk based upon its amazing web. The spider constructs its giant orb web (up to 2.8 m2) suspended above streams, rivers, and lakes. It attaches the web to substrates on each riverbank by anchor threads as long as 25 meters. Dragline silk from both Caerostris webs and forcibly pulled silk, exhibits an extraordinary combination of high tensile strength and elasticity previously unknown for spider silk. The toughness of forcibly silked fibers averages 350 MJ/m3, with some samples reaching 520 MJ/m3. Thus, C. darwini silk is more than twice tougher than any previously described silk, and over 10 times better than Kevlar®. Caerostris capture spiral silk is similarly exceptionally tough. Conclusions Caerostris darwini produces the toughest known biomaterial. We hypothesize that this extraordinary toughness coevolved with the unusual ecology and web architecture of these spiders, decreasing the likelihood of bridgelines breaking and collapsing the web into the river. This hypothesis predicts that rapid change in material properties of silk co-occurred with ecological shifts within the genus, and can thus be tested by combining material science, behavioral observations, and phylogenetics. Our findings highlight the potential benefits of natural history–informed bioprospecting to discover silks, as well as other materials, with novel and exceptional properties to serve as models in biomimicry.Primary funding for this work came from the Slovenian Research Agency (grant Z1-9799-0618-07 to I. Agnarsson), the National Geographic Society (grant 8655-09 to the authors), and the National Science Foundation (grants DBI-0521261, DEB-0516038 and IOS-0745379 to T. Blackledge). Additional funding came from the European Community 6th Framework Programme (a Marie Curie International Reintegration Grant MIRG-CT-2005 036536 to M. Kuntner). The 2001 field work was supported by the Sallee Charitable Trust grant to I. Agnarsson and M. Kuntner and by a United States National Science Foundation grant (DEB-9712353) to G. Hormiga and J. A. Coddington. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Tie them up tight: wrapping by Philoponella vicinaspiders breaks, compresses and sometimes kills their prey

    Get PDF
    We show that uloborid spiders, which lack the poison glands typical of nearly all other spiders, employ thousands of wrapping movements with their hind legs and up to hundreds of meters of silk line to make a shroud that applies substantial compressive force to their prey. Shrouds sometimes break the prey’s legs, buckle its compound eyes inward, or kill it outright. The compressive force apparently results from the summation of small tensions on sticky lines as they are applied to the prey package. Behavioral details indicate that wrapping is designed to compact prey; in turn, compaction probably functions to facilitate these spiders’ unusual method of feeding. This is the first demonstration that prey wrapping by spiders compacts and physically damages their prey, rather than simply restraining them.Instituto Smithsoniano de Investigaciones Tropicales (STRI)Universidad de Costa RicaUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologí

    Changes in the Adhesive Properties of Spider Aggregate Glue During the Evolution of Cobwebs

    Get PDF
    We compare the prey capture glues produced by orb-weaving spiders (viscid glue) and their evolutionary descendents, the cobweb-weaving spiders (gumfoot glue). These glues are produced in homologous glands but exhibit contrasting structure, properties and response to changing humidity. Individual glue droplet stretching measurements indicate that the gumfoot glue behaves like a viscoelastic liquid in contrast to the viscid glue, which behaves like a viscoelastic solid. Moreover, the gumfoot glue is largely humidity-resistant – elasticity and adhesion are constant across variation in humidity and there is weak volume-dependence. Viscid glue, however, is highly humidity-sensitive. The glue expands an order of magnitude and demonstrates a monotonous reduction in elasticity under increased humidity, while glue adhesion optimizes at intermediate levels of humidity. We suggest that observed differences are due to different ‘tackifiers' used in these systems. These results shall inspire future efforts in fabricating stimuli-resistant and stimuli-sensitive materials

    Pupil Size in Spider Eyes Is Linked to Post-Ecdysal Lens Growth

    Get PDF
    In this study we describe a distinctive pigment ring that appears in spider eyes after ecdysis and successively decreases in size in the days thereafter. Although pigment stops in spider eyes are well known, size variability is, to our knowledge, reported here for the first time. Representative species from three families (Ctenidae, Sparassidae and Lycosidae) are investigated and, for one of these species (Cupiennius salei, Ctenidae), the progressive increase in pupil diameter is monitored. In this species the pupil occupies only a fourth of the total projected lens surface after ecdysis and reaches its final size after approximately ten days. MicroCT images suggest that the decrease of the pigment ring is linked to the growth of the corneal lens after ecdysis. The pigment rings might improve vision in the immature eye by shielding light rays that would otherwise enter the eye via peripheral regions of the cornea, beside the growing crystalline lens

    Viscoelastic solids explain spider web stickiness

    No full text
    corecore