310 research outputs found

    Reward and Feedback in the Control over Dynamic Events

    Get PDF

    The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs

    Get PDF
    The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised

    Evolution of Robustness to Noise and Mutation in Gene Expression Dynamics

    Get PDF
    Phenotype of biological systems needs to be robust against mutation in order to sustain themselves between generations. On the other hand, phenotype of an individual also needs to be robust against fluctuations of both internal and external origins that are encountered during growth and development. Is there a relationship between these two types of robustness, one during a single generation and the other during evolution? Could stochasticity in gene expression have any relevance to the evolution of these robustness? Robustness can be defined by the sharpness of the distribution of phenotype; the variance of phenotype distribution due to genetic variation gives a measure of `genetic robustness' while that of isogenic individuals gives a measure of `developmental robustness'. Through simulations of a simple stochastic gene expression network that undergoes mutation and selection, we show that in order for the network to acquire both types of robustness, the phenotypic variance induced by mutations must be smaller than that observed in an isogenic population. As the latter originates from noise in gene expression, this signifies that the genetic robustness evolves only when the noise strength in gene expression is larger than some threshold. In such a case, the two variances decrease throughout the evolutionary time course, indicating increase in robustness. The results reveal how noise that cells encounter during growth and development shapes networks' robustness to stochasticity in gene expression, which in turn shapes networks' robustness to mutation. The condition for evolution of robustness as well as relationship between genetic and developmental robustness is derived through the variance of phenotypic fluctuations, which are measurable experimentally.Comment: 25 page

    Trophic Garnishes: Cat–Rat Interactions in an Urban Environment

    Get PDF
    BACKGROUND:Community interactions can produce complex dynamics with counterintuitive responses. Synanthropic community members are of increasing practical interest for their effects on biodiversity and public health. Most studies incorporating introduced species have been performed on islands where they may pose a risk to the native fauna. Few have examined their interactions in urban environments where they represent the majority of species. We characterized house cat (Felis catus) predation on wild Norway rats (Rattus norvegicus), and its population effects in an urban area as a model system. Three aspects of predation likely to influence population dynamics were examined; the stratum of the prey population killed by predators, the intensity of the predation, and the size of the predator population. METHODOLOGY/PRINCIPAL FINDINGS:Predation pressure was estimated from the sizes of the rat and cat populations, and the characteristics of rats killed in 20 alleys. Short and long term responses of rat population to perturbations were examined by removal trapping. Perturbations removed an average of 56% of the rats/alley but had no negative long-term impact on the size of the rat population (49.6+/-12.5 rats/alley and 123.8+/-42.2 rats/alley over two years). The sizes of the cat population during two years (3.5 animals/alley and 2.7 animals/alley) also were unaffected by rat population perturbations. Predation by cats occurred in 9/20 alleys. Predated rats were predominantly juveniles and significantly smaller (144.6 g+/-17.8 g) than the trapped rats (385.0 g+/-135.6 g). Cats rarely preyed on the larger, older portion of the rat population. CONCLUSIONS/SIGNIFICANCE:The rat population appears resilient to perturbation from even substantial population reduction using targeted removal. In this area there is a relatively low population density of cats and they only occasionally prey on the rat population. This occasional predation primarily removes the juvenile proportion of the rat population. The top predator in this urban ecosystem appears to have little impact on the size of the prey population, and similarly, reduction in rat populations doesn't impact the size of the cat population. However, the selected targeting of small rats may locally influence the size structure of the population which may have consequences for patterns of pathogen transmission

    MyD88 Is Required for Protection from Lethal Infection with a Mouse-Adapted SARS-CoV

    Get PDF
    A novel human coronavirus, SARS-CoV, emerged suddenly in 2003, causing approximately 8000 human cases and more than 700 deaths worldwide. Since most animal models fail to faithfully recapitulate the clinical course of SARS-CoV in humans, the virus and host factors that mediate disease pathogenesis remain unclear. Recently, our laboratory and others developed a recombinant mouse-adapted SARS-CoV (rMA15) that was lethal in BALB/c mice. In contrast, intranasal infection of young 10-week-old C57BL/6 mice with rMA15 results in a nonlethal infection characterized by high titer replication within the lungs, lung inflammation, destruction of lung tissue, and loss of body weight, thus providing a useful model to identify host mediators of protection. Here, we report that mice deficient in MyD88 (MyD88−/−), an adapter protein that mediates Toll-like receptor (TLR), IL-1R, and IL-18R signaling, are far more susceptible to rMA15 infection. The genetic absence of MyD88 resulted in enhanced pulmonary pathology and greater than 90% mortality by day 6 post-infection. MyD88−/− mice had significantly higher viral loads in lung tissue throughout the course of infection. Despite increased viral loads, the expression of multiple proinflammatory cytokines and chemokines within lung tissue and recruitment of inflammatory monocytes/macrophages to the lung was severely impaired in MyD88−/− mice compared to wild-type mice. Furthermore, mice deficient in chemokine receptors that contribute to monocyte recruitment to the lung were more susceptible to rMA15-induced disease and exhibited severe lung pathology similar to that seen in MyD88−/−mice. These data suggest that MyD88-mediated innate immune signaling and inflammatory cell recruitment to the lung are required for protection from lethal rMA15 infection

    Working Memory Impairment in Fibromyalgia Patients Associated with Altered Frontoparietal Memory Network

    Get PDF
    BACKGROUND: Fibromyalgia (FM) is a disorder characterized by chronic widespread pain and frequently associated with other symptoms. Patients with FM commonly report cognitive complaints, including memory problem. The objective of this study was to investigate the differences in neural correlates of working memory between FM patients and healthy subjects, using functional magnetic resonance imaging (MRI). METHODOLOGY/PRINCIPAL FINDINGS: Nineteen FM patients and 22 healthy subjects performed an n-back memory task during MRI scan. Functional MRI data were analyzed using within- and between-group analysis. Both activated and deactivated brain regions during n-back task were evaluated. In addition, to investigate the possible effect of depression and anxiety, group analysis was also performed with depression and anxiety level in terms of Beck depression inventory (BDI) and Beck anxiety inventory (BAI) as a covariate. Between-group analyses, after controlling for depression and anxiety level, revealed that within the working memory network, inferior parietal cortex was strongly associated with the mild (r = 0.309, P = 0.049) and moderate (r = 0.331, P = 0.034) pain ratings. In addition, between-group comparison revealed that within the working memory network, the left DLPFC, right VLPFC, and right inferior parietal cortex were associated with the rating of depression and anxiety? CONCLUSIONS/SIGNIFICANCE: Our results suggest that the working memory deficit found in FM patients may be attributable to differences in neural activation of the frontoparietal memory network and may result from both pain itself and depression and anxiety associated with pain

    Time domains of the hypoxic ventilatory response in ectothermic vertebrates

    Get PDF
    Over a decade has passed since Powell et al. (Respir Physiol 112:123–134, 1998) described and defined the time domains of the hypoxic ventilatory response (HVR) in adult mammals. These time domains, however, have yet to receive much attention in other vertebrate groups. The initial, acute HVR of fish, amphibians and reptiles serves to minimize the imbalance between oxygen supply and demand. If the hypoxia is sustained, a suite of secondary adjustments occur giving rise to a more long-term balance (acclimatization) that allows the behaviors of normal life. These secondary responses can change over time as a function of the nature of the stimulus (the pattern and intensity of the hypoxic exposure). To add to the complexity of this process, hypoxia can also lead to metabolic suppression (the hypoxic metabolic response) and the magnitude of this is also time dependent. Unlike the original review of Powell et al. (Respir Physiol 112:123–134, 1998) that only considered the HVR in adult animals, we also consider relevant developmental time points where information is available. Finally, in amphibians and reptiles with incompletely divided hearts the magnitude of the ventilatory response will be modulated by hypoxia-induced changes in intra-cardiac shunting that also improve the match between O2 supply and demand, and these too change in a time-dependent fashion. While the current literature on this topic is reviewed here, it is noted that this area has received little attention. We attempt to redefine time domains in a more ‘holistic’ fashion that better accommodates research on ectotherms. If we are to distinguish between the genetic, developmental and environmental influences underlying the various ventilatory responses to hypoxia, however, we must design future experiments with time domains in mind

    C. elegans Agrin Is Expressed in Pharynx, IL1 Neurons and Distal Tip Cells and Does Not Genetically Interact with Genes Involved in Synaptogenesis or Muscle Function

    Get PDF
    Agrin is a basement membrane protein crucial for development and maintenance of the neuromuscular junction in vertebrates. The C. elegans genome harbors a putative agrin gene agr-1. We have cloned the corresponding cDNA to determine the primary structure of the protein and expressed its recombinant fragments to raise specific antibodies. The domain organization of AGR-1 is very similar to the vertebrate orthologues. C. elegans agrin contains a signal sequence for secretion, seven follistatin domains, three EGF-like repeats and two laminin G domains. AGR-1 loss of function mutants did not exhibit any overt phenotypes and did not acquire resistance to the acetylcholine receptor agonist levamisole. Furthermore, crossing them with various mutants for components of the dystrophin-glycoprotein complex with impaired muscle function did not lead to an aggravation of the phenotypes. Promoter-GFP translational fusion as well as immunostaining of worms revealed expression of agrin in buccal epithelium and the protein deposition in the basal lamina of the pharynx. Furthermore, dorsal and ventral IL1 head neurons and distal tip cells of the gonad arms are sources of agrin production, but no expression was detectable in body muscles or in the motoneurons innervating them. Recombinant worm AGR-1 fragment is able to cluster vertebrate dystroglycan in cultured cells, implying a conservation of this interaction, but since neither of these proteins is expressed in muscle of C. elegans, this interaction may be required in different tissues. The connections between muscle cells and the basement membrane, as well as neuromuscular junctions, are structurally distinct between vertebrates and nematodes
    corecore