89 research outputs found

    Feasibility and initial experience of assessment of mechanical dyssynchrony using cardiovascular magnetic resonance and semi-automatic border detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The systolic dyssynchrony index (SDI) has been introduced as a measure of mechanical dyssynchrony using three-dimensional echocardiography to select patients who may benefit from cardiac resynchronization therapy (CRT). However, three-dimensional echocardiography may be inadequate in a number of patients with suboptimal acoustic window and no single echocardiographic measure of dyssynchrony has proven to be of value in selecting patients for CRT. Thus, the aim of this study was to determine the value of cardiovascular magnetic resonance (CMR) for the assessment of the SDI in patients with reduced LV function as well as in healthy controls using semi-automatic border tracking.</p> <p>Methods</p> <p>We investigated a total of 45 patients including 35 patients (65 ± 8 years) with reduced LV function (EF 30 ± 11%) and a wide QRS complex as well as 10 control subjects (42 ± 21 years, EF 70 ± 11%). For cine imaging a standard SSFP imaging sequence was used with a temporal resolution of 40 frames per RR-interval. Quantitative analysis was performed off-line using a software prototype for semi-automatic border detection. Global volumes, ejection fraction and the SDI were calculated in each subject. SDI was compared with standard echocardiographic parameters of dyssynchrony.</p> <p>Results</p> <p>The mean SDI differed significantly between patients (14 ± 5%) and controls (5 ± 2%, p < 0.001). An exponential correlation between the EF and the SDI was observed (r = -0.84; p < 0.001). In addition, a significant association between the SDI and the standard deviation of time to peak systolic motion of 12 LV segments (Ts-SD) determined by echocardiography was observed (r = 0.66, p = 0.002).</p> <p>Conclusion</p> <p>The results of this preliminary study suggest that CMR with semi-automatic border detection may be useful for the assessment of mechanical dyssynchrony in patients with reduced LV function.</p> <p>No trial registration due to recruitment period between October 2004 and November 2006</p

    Marine Biodiversity in the Australian Region

    Get PDF
    The entire Australian marine jurisdictional area, including offshore and sub-Antarctic islands, is considered in this paper. Most records, however, come from the Exclusive Economic Zone (EEZ) around the continent of Australia itself. The counts of species have been obtained from four primary databases (the Australian Faunal Directory, Codes for Australian Aquatic Biota, Online Zoological Collections of Australian Museums, and the Australian node of the Ocean Biogeographic Information System), but even these are an underestimate of described species. In addition, some partially completed databases for particular taxonomic groups, and specialized databases (for introduced and threatened species) have been used. Experts also provided estimates of the number of known species not yet in the major databases. For only some groups could we obtain an (expert opinion) estimate of undiscovered species. The databases provide patchy information about endemism, levels of threat, and introductions. We conclude that there are about 33,000 marine species (mainly animals) in the major databases, of which 130 are introduced, 58 listed as threatened and an unknown percentage endemic. An estimated 17,000 more named species are either known from the Australian EEZ but not in the present databases, or potentially occur there. It is crudely estimated that there may be as many as 250,000 species (known and yet to be discovered) in the Australian EEZ. For 17 higher taxa, there is sufficient detail for subdivision by Large Marine Domains, for comparison with other National and Regional Implementation Committees of the Census of Marine Life. Taxonomic expertise in Australia is unevenly distributed across taxa, and declining. Comments are given briefly on biodiversity management measures in Australia, including but not limited to marine protected areas

    Detection of polyol accumulation in a new ovarian carcinoma cell line, CABA I: a1H NMR study

    Get PDF
    Ovarian carcinomas represent a major form of gynaecological malignancies, whose treatment consists mainly of surgery and chemotherapy. Besides the difficulty of prognosis, therapy of ovarian carcinomas has reached scarce improvement, as a consequence of lack of efficacy and development of drug-resistance. The need of different biochemical and functional parameters has grown, in order to obtain a larger view on processes of biological and clinical significance. In this paper we report novel metabolic features detected in a series of different human ovary carcinoma lines, by 1H NMR spectroscopy of intact cells and their extracts. Most importantly, a new ovarian adenocarcinoma line CABA I, showed strong signals in the spectral region between 3.5 and 4.0 p.p.m., assigned for the first time to the polyol sorbitol (39±11 nmol/106 cells). 13C NMR analyses of these cells incubated with [1-13C]-D-glucose demonstrated labelled-sorbitol formation. The other ovarian carcinoma cell lines (OVCAR-3, IGROV 1, SK-OV-3 and OVCA432), showed, in the same spectral region, intense resonances from other metabolites: glutathione (up to 30 nmol/106 cells) and myo-inositol (up to 50 nmol/106 cells). Biochemical and biological functions are suggested for these compounds in human ovarian carcinoma cells, especially in relation to their possible role in cell detoxification mechanisms during tumour progression

    The Impact of the C-Terminal Domain on the Interaction of Human DNA Topoisomerase II α and β with DNA

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; Type II DNA topoisomerases are essential, ubiquitous enzymes that act to relieve topological problems arising in DNA from normal cellular activity. Their mechanism of action involves the ATP-dependent transport of one DNA duplex through a transient break in a second DNA duplex; metal ions are essential for strand passage. Humans have two isoforms, topoisomerase IIα and topoisomerase IIβ, that have distinct roles in the cell. The C-terminal domain has been linked to isoform specific differences in activity and DNA interaction. &lt;b&gt;Methodology/Principal Findings&lt;/b&gt; We have investigated the role of the C-terminal domain in the binding of human topoisomerase IIα and topoisomerase IIβ to DNA in fluorescence anisotropy assays using full length and C-terminally truncated enzymes. We find that the C-terminal domain of topoisomerase IIβ but not topoisomerase IIα affects the binding of the enzyme to the DNA. The presence of metal ions has no effect on DNA binding. Additionally, we have examined strand passage of the full length and truncated enzymes in the presence of a number of supporting metal ions and find that there is no difference in relative decatenation between isoforms. We find that calcium and manganese, in addition to magnesium, can support strand passage by the human topoisomerase II enzymes. &lt;b&gt;Conclusions/Significance&lt;/b&gt; The C-terminal domain of topoisomerase IIβ, but not that of topoisomerase IIα, alters the enzyme's KD for DNA binding. This is consistent with previous data and may be related to the differential modes of action of the two isoforms in vivo. We also show strand passage with different supporting metal ions for human topoisomerase IIα or topoisomerase IIβ, either full length or C-terminally truncated. They all show the same preferences, whereby Mg &#62; Ca &#62; Mn

    Ischemic patterns assessed by positron emission tomography predict adverse outcome in patients with idiopathic dilated cardiomyopathy

    Get PDF
    Although patients with idiopathic dilated cardiomyopathy (DCM) have no coronary artery disease, regional impairment of myocardial perfusion combined with preserved metabolism has been found using positron emission tomography (PET). Our aim was to assess the prognostic relevance of PET-mismatch between stress myocardial perfusion and glucose uptake on clinical outcome in DCM. In 24 patients with DCM who underwent both myocardial perfusion and metabolism PET scanning, "mismatch" was assessed and the association with clinical outcome (hospitalization, mortality, and heart transplantation) was investigated. Mismatch was found in 16 patients (66.7%). Univariate analysis showed that the presence of mismatch was associated with adverse outcome (P = 0.03). After adjustment for sex and age, the association remained significant with an adjusted relative risk of 10.4 (95% CI 1.1-103; P = 0.04) for death, heart transplant, or hospitalization. Univariate analysis also showed that a higher extent of mismatch was significantly associated with adverse outcome (P = 0.02). After adjusting for sex and age, the association remained significant with an adjusted relative risk of 6.5 [95% CI 1.2-36; P = 0.03] for death, heart transplantation, or hospitalization. PET stress perfusion-metabolism mismatch, indicative for ischemia, is frequently found in DCM patients and related to a poorer outcome

    Antimicrobial resistance (AMR) nanomachines: mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation

    Get PDF
    In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics—the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be considered complex ‘nanomachines’ that drive survival of bacterial cells in antibiotic environments

    Coronary microvascular resistance: methods for its quantification in humans

    Get PDF
    Coronary microvascular dysfunction is a topic that has recently gained considerable interest in the medical community owing to the growing awareness that microvascular dysfunction occurs in a number of myocardial disease states and has important prognostic implications. With this growing awareness, comes the desire to accurately assess the functional capacity of the coronary microcirculation for diagnostic purposes as well as to monitor the effects of therapeutic interventions that are targeted at reversing the extent of coronary microvascular dysfunction. Measurements of coronary microvascular resistance play a pivotal role in achieving that goal and several invasive and noninvasive methods have been developed for its quantification. This review is intended to provide an update pertaining to the methodology of these different imaging techniques, including the discussion of their strengths and weaknesses

    Exploiting bacterial DNA gyrase as a drug target: current state and perspectives

    Get PDF
    DNA gyrase is a type II topoisomerase that can introduce negative supercoils into DNA at the expense of ATP hydrolysis. It is essential in all bacteria but absent from higher eukaryotes, making it an attractive target for antibacterials. The fluoroquinolones are examples of very successful gyrase-targeted drugs, but the rise in bacterial resistance to these agents means that we not only need to seek new compounds, but also new modes of inhibition of this enzyme. We review known gyrase-specific drugs and toxins and assess the prospects for developing new antibacterials targeted to this enzyme
    corecore