26 research outputs found

    Evidence for the ‘Good Genes’ Model: Association of MHC Class II DRB Alleles with Ectoparasitism and Reproductive State in the Neotropical Lesser Bulldog Bat, Noctilio albiventris

    Get PDF
    The adaptive immune system has a major impact on parasite resistance and life history strategies. Immunological defence is costly both in terms of immediate activation and long-term maintenance. The ‘good genes’ model predicts that males with genotypes that promote a good disease resistance have the ability to allocate more resources to reproductive effort which favours the transmission of good alleles into future generations. Our study shows a correlation between immune gene constitution (Major Histocompatibility Complex, MHC class II DRB), ectoparasite loads (ticks and bat flies) and the reproductive state in a neotropical bat, Noctilio albiventris. Infestation rates with ectoparasites were linked to specific Noal-DRB alleles, differed among roosts, increased with body size and co-varied with reproductive state particularly in males. Non-reproductive adult males were more infested with ectoparasites than reproductively active males, and they had more often an allele (Noal-DRB*02) associated with a higher tick infestation than reproductively active males or subadults. We conclude that the individual immune gene constitution affects ectoparasite susceptibility, and contributes to fitness relevant trade-offs in male N. albiventris as suggested by the ‘good genes’ model

    An immunohistochemical study of the antinociceptive effect of calcitonin in ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calcitonin is used as a treatment to reduce the blood calcium concentration in hypercalcemia and to improve bone mass in osteoporosis. An analgesic effect of calcitonin has been observed and reported in clinical situations. Ovariectomaized (OVX) rats exhibit the same hormonal changes as observed in humans with osteoporosis and are an animal model of postmenopousal osteoporosis. The aim of this study to investigate antinociceptive effect of calcitonin in OVX rats using the immunohistochemical study.</p> <p>Methods</p> <p>We assessed the antinociceptive effects of calcitonin in an ovariectomized (OVX) rat model, which exhibit osteoporosis and hyperalgesia, using the immunohistochemical method. Fifteen rats were ovariectomized bilaterally, and ten rats were received the same surgery expected for ovariectomy as a sham model. We used five groups: the OVX-CT (n = 5), the sham-CT (n = 5), and the OVX-CT-pcpa (n = 5) groups recieved calcitonin (CT: 4 U/kg/day), while OVX-vehi (n = 5) and the sham-vehi (n = 5) groups received vehicle subcutaneously 5 times a week for 4 weeks. The OVX-CT-pcpa-group was given traperitoneal injection of p-chlorophenylalanine (pcpa; an inhibitor of serotonin biosynthesis) (100 mg/kg/day) in the last 3 days of calcitonon injection. Two hours after 5% formalin (0.05 ml) subcutaneously into the hind paw, the L5 spinal cord were removed and the number of Fos-immunoreactive (ir) neurons were evaluated using the Mann-Whitney-U test.</p> <p>Results</p> <p>The numbers of Fos-ir neurons in the OVX-CT and sham-CT groups were significantly less than in the OVX-vehi and sham-vehi groups, respectively (p = 0.0090, p = 0.0090). The number of Fos-ir neurons in the OVX-CT-pcpa-group was significantly more than that of the OVX-CT-group (p = 0.0283), which means pcpa inhibits calcitonin induced reduction of c-Fos production.</p> <p>Conclusion</p> <p>The results in this study demonstrated that 1) the increase of c-Fos might be related to hyperalgesia in OVX-rats. 2) Calcitonin has an antinociceptive effect in both OVX and sham rats. 3) The central serotonergic system is involved in the antinociceptive properties of calcitonin.</p

    Plio-Pleistocene climatic change had a major impact on the assembly and disassembly processes of Iberian rodent communities

    Get PDF
    Comprehension of changes in community composition through multiple spatio-temporal scales is a prime challenge in ecology and palaeobiology. However, assembly, structuring and disassembly of biotic metacommunities in deep-time is insufficiently known. To address this, we used the extensively sampled Iberian Plio-Pleistocene fossil record of rodent faunas as our model system to explore how global climatic events may alter metacommunity structure. Through factor analysis, we found five sets of genera, called faunal components, which co-vary in proportional diversity over time. These faunal components had different spatio-temporal distributions throughout the Plio-Pleistocene, resulting in non-random changes in species assemblages, particularly in response to the development of the Pleistocene glaciations. Three successive metacommunities with distinctive taxonomic structures were identified as a consequence of the differential responses of their members to global climatic change: (1) Ruscinian subtropical faunas (5.3–3.4 Ma) dominated by a faunal component that can be considered as a Miocene legacy; (2) transition faunas during the Villafranchian–Biharian (3.4–0.8 Ma) with a mixture of different faunal components; and (3) final dominance of the temperate Toringian faunas (0.8–0.01 Ma) that would lead to the modern Iberian assemblage. The influence of the cooling global temperature drove the reorganisation of these rodent metacommunities. Selective extinction processes due to this large-scale environmental disturbance progressively eliminated the subtropical specialist species from the early Pliocene metacommunity. This disassembly process was accompanied by the organisation of a diversified metacommunity with an increased importance of biome generalist species, and finally followed by the assembly during the middle–late Pleistocene of a new set of species specialised in the novel environments developed as a consequence of the glaciations

    In vitro

    No full text

    Eeyarestatin 1 interferes with both retrograde and anterograde intracellular trafficking pathways

    Get PDF
    Background: The small molecule Eeyarestatin I (ESI) inhibits the endoplasmic reticulum (ER)-cytosol dislocation and subsequent degradation of ERAD (ER associated protein degradation) substrates. Toxins such as ricin and Shiga/Shiga-like toxins (SLTx) are endocytosed and trafficked to the ER. Their catalytic subunits are thought to utilise ERAD-like mechanisms to dislocate from the ER into the cytosol, where a proportion uncouples from the ERAD process, recovers a catalytic conformation and destroys their cellular targets. We therefore investigated ESI as a potential inhibitor of toxin dislocation. Methodology and Principal Findings: Using cytotoxicity measurements, we found no role for ESI as an inhibitor of toxin dislocation from the ER, but instead found that for SLTx, ESI treatment of cells was protective by reducing the rate of toxin delivery to the ER. Microscopy of the trafficking of labelled SLTx and its B chain (lacking the toxic A chain) showed a delay in its accumulation at a peri-nuclear location, confirmed to be the Golgi by examination of SLTx B chain metabolically labelled in the trans-Golgi cisternae. The drug also reduced the rate of endosomal trafficking of diphtheria toxin, which enters the cytosol from acidified endosomes, and delayed the Golgi-specific glycan modifications and eventual plasma membrane appearance of tsO45 VSV-G protein, a classical marker for anterograde trafficking. Conclusions and Significance: ESI acts on one or more components that function during vesicular transport, whilst at least one retrograde trafficking pathway, that of ricin, remains unperturbed
    corecore