3,833 research outputs found

    Super-resolving phase measurements with a multi-photon entangled state

    Full text link
    Using a linear optical elements and post-selection, we construct an entangled polarization state of three photons in the same spatial mode. This state is analogous to a ``photon-number path entangled state'' and can be used for super-resolving interferometry. Measuring a birefringent phase shift, we demonstrate two- and three-fold improvements in phase resolution.Comment: 4 pages, 3 figure

    Nitrogen controlled iron catalyst phase during carbon nanotube growth

    Get PDF
    Close control over the active catalyst phase and hence carbon nanotube structure remains challenging in catalytic chemical vapor deposition since multiple competing active catalyst phases typically co-exist under realistic synthesis conditions. Here, using in-situ X-ray diffractometry we show that the phase of supported iron catalyst particles can be reliably controlled via the addition of NH3 during nanotube synthesis. Unlike to polydisperse catalyst phase mixtures during H2 diluted nanotube growth, nitrogen addition controllably leads to phase-pure γ-Fe during pre-treatment and to phase-pure Fe3C during growth. We rationalize these findings in the context of ternary Fe-C-N phase diagram calculations and thus highlight the use of pretreatment- and add-gases as a key parameter towards controlled carbon nanotube growth.This is the author accepted manuscript. The final version is available from AIP via http://dx.doi.org/10.1063/1.489795

    The challenge of acute-stroke management: does telemedicine offer a solution?

    Get PDF
    <p><b>Background:</b> Several studies have described successful experiences with the use of telemedicine in acute stroke. The objective of this study was to assess the feasibility, acceptability, and treatment delivery reliability, of telemedicine systems for the clinical and radiological assessment, and management of acute-stroke patients.</p> <p><b>Summary of Review:</b> A systematic review of the literature was carried out. Studies were included if they met the following criteria: (1) study population included participants with a diagnosis of suspected acute stroke, (2) intervention included the use of telemedicine systems to aid assessment, diagnosis, or treatment in acute stroke, and (3) outcomes measured related to feasibility in clinical practice, acceptability to patients, carers, and staff, reliability of telemedicine systems, and effectiveness in delivering treatment, especially tissue plasminogen activator (tPA). Overall, 17 relevant non-randomised studies reported that telemedicine systems were feasible and acceptable. Interrater reliability was excellent for global clinical assessments and decisions on radiological exclusion criteria although agreement for individual assessment items was more variable. Telemedicine systems were associated with increased use of tPA.</p> <p><b>Conclusion:</b> Although there is limited reliable evidence, observational studies have indicated that telemedicine systems can be feasible, acceptable, and reliable in acute-stroke management. In addition, telemedicine consultations were associated with improved delivery of tPA.</p&gt

    Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community

    Get PDF
    In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the “boom-bust” behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions.

    Reactive intercalation and oxidation at the buried graphene-germanium interface

    Get PDF
    We explore a number of different electrochemical, wet chemical, and gas phase approaches to study intercalation and oxidation at the buried graphene-Ge interface. While the previous literature focused on the passivation of the Ge surface by chemical vapor deposited graphene, we show that particularly via electrochemical intercalation in a 0.25 N solution of anhydrous sodium acetate in glacial acetic acid, this passivation can be overcome to grow GeO2 under graphene. Angle resolved photoemission spectroscopy, Raman spectroscopy, He ion microscopy, and time-of-flight secondary ion mass spectrometry show that the monolayer graphene remains undamaged and its intrinsic strain is released by the interface oxidation. Graphene acts as a protection layer for the as-grown Ge oxide, and we discuss how these insights can be utilized for new processing approaches.We acknowledge financial support from the EPSRC (EP/K016636/1, EP/P51021X/1) and the Future Photonics Hub - Innovation Partnership Fund (EPSRC EP/L00044X/1). P.B.W. acknowledges EPSRC Cambridge NanoDTC EP/G037221/1. R.S.W. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme through a EU Marie Skłodowska-Curie Individual Fellowship (Global) under grant ARTIST (no. 656870). R.W. acknowledges EPSRC Doctoral Training Award (EP/M506485/1)

    Introducing Overlapping Grain Boundaries in Chemical Vapor Deposited Hexagonal Boron Nitride Monolayer Films.

    Get PDF
    We demonstrate the growth of overlapping grain boundaries in continuous, polycrystalline hexagonal boron nitride (h-BN) monolayer films via scalable catalytic chemical vapor deposition. Unlike the commonly reported atomically stitched grain boundaries, these overlapping grain boundaries do not consist of defect lines within the monolayer films but are composed of self-sealing bilayer regions of limited width. We characterize this overlapping h-BN grain boundary structure in detail by complementary (scanning) transmission electron microscopy techniques and propose a catalytic growth mechanism linked to the subsurface/bulk of the process catalyst and its boron and nitrogen solubilities. Our data suggest that the overlapping grain boundaries are comparatively resilient against deleterious pinhole formation associated with grain boundary defect lines and thus may reduce detrimental breakdown effects when polycrystalline h-BN monolayer films are used as ultrathin dielectrics, barrier layers, or separation membranes

    In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites.

    Get PDF
    Nanocomposite thin films comprised of metastable metal carbides in a carbon matrix have a wide variety of applications ranging from hard coatings to magnetics and energy storage and conversion. While their deposition using nonequilibrium techniques is established, the understanding of the dynamic evolution of such metastable nanocomposites under thermal equilibrium conditions at elevated temperatures during processing and during device operation remains limited. Here, we investigate sputter-deposited nanocomposites of metastable nickel carbide (Ni3C) nanocrystals in an amorphous carbon (a-C) matrix during thermal postdeposition processing via complementary in situ X-ray diffractometry, in situ Raman spectroscopy, and in situ X-ray photoelectron spectroscopy. At low annealing temperatures (300 °C) we observe isothermal Ni3C decomposition into face-centered-cubic Ni and amorphous carbon, however, without changes to the initial finely structured nanocomposite morphology. Only for higher temperatures (400-800 °C) Ni-catalyzed isothermal graphitization of the amorphous carbon matrix sets in, which we link to bulk-diffusion-mediated phase separation of the nanocomposite into coarser Ni and graphite grains. Upon natural cooling, only minimal precipitation of additional carbon from the Ni is observed, showing that even for highly carbon saturated systems precipitation upon cooling can be kinetically quenched. Our findings demonstrate that phase transformations of the filler and morphology modifications of the nanocomposite can be decoupled, which is advantageous from a manufacturing perspective. Our in situ study also identifies the high carbon content of the Ni filler crystallites at all stages of processing as the key hallmark feature of such metal-carbon nanocomposites that governs their entire thermal evolution. In a wider context, we also discuss our findings with regard to the much debated potential role of metastable Ni3C as a catalyst phase in graphene and carbon nanotube growth

    Quinpramine Ameliorates Rat Experimental Autoimmune Neuritis and Redistributes MHC Class II Molecules

    Get PDF
    Activation of inflammatory cells is central to the pathogenesis of autoimmune demyelinating diseases of the peripheral nervous system. The novel chimeric compound quinpramine—generated from imipramine and quinacrine—redistributes cholesterol rich membrane domains to intracellular compartments. We studied the immunological and clinical effects of quinpramine in myelin homogenate induced Lewis rat experimental autoimmune neuritis (EAN), a model system for acute human inflammatory neuropathies, such as the Guillain-Barré syndrome. EAN animals develop paresis of all limbs due to autoimmune inflammation of peripheral nerves. Quinpramine treatment ameliorated clinical disease severity of EAN and infiltration of macrophages into peripheral nerves. It reduced expression of MHC class II molecules on antigen presenting cells and antigen specific T cell proliferation both in vitro and in vivo. Quinpramine exerted its anti-proliferatory effect on antigen presenting cells, but not on responder T cells. Our data suggest that quinpramine represents a candidate pharmaceutical for inflammatory neuropathies
    corecore