42 research outputs found

    Supercritical flows overspilling from bypass‐dominated submarine channels and the development of overbank bedforms

    Get PDF
    Overbank deposits of submarine channels are typically thin‐bedded, fine‐grained and predominantly characterized by a series of sedimentary structures interpreted to record a relatively simple history of waning flow. Here, a new type of bedform indicative of Froude‐supercritical flow is reported from successions of thin‐bedded turbidites interpreted as channel overbank deposits in the Upper Cretaceous Rosario Formation, Baja California, Mexico. A link is demonstrated between the development of overbank deposits in the form of depositional terraces or internal levees and contemporaneously active sediment transport, bypass and deposition of coarser‐grained material in a channel. The overbank bedforms overlie an erosion surface and contain a suite of sedimentary structures indicative of initially Froude‐supercritical flow conditions and a progressive waning of flow strength. In some cases, a stacked repetition of facies is interpreted to record a rejuvenation of flow energy. The characteristic sedimentary sequence observed is as follows: (a) long wavelength, low amplitude erosional surface with superimposed scours; (b) antidune backsets; (c) upper stage plane‐parallel lamination; (d) subcritical climbing ripples; (e) supercritical climbing ripples; (f) lower stage planar laminated tops; (g) a sharp upper surface. The exact vertical sequence of sedimentary structures encountered varies depending on the point of observation with respect to the bedform crest and distance from the parent channel. The recognition of these distinctive bedforms allows for interpretation of sediment bypass and proximity to a channel thalweg. These bedforms have not hitherto been described and provide a further example of the range of flow processes operating in submarine channel–levee systems, which aids depositional environment interpretation in both subsurface and outcrop studies

    Palynofacies classification of submarine fan depositional environments: Outcrop examples from the Marnoso-Arenacea Formation, Italy

    Get PDF
    Basin floor fans contain some of the largest deep-water hydrocarbon accumulations discovered, however they also demonstrate extremely complex stratigraphic architecture, understanding of which is crucial for maximum recovery. Here we develop a new method, based upon palynofacies analysis, for the distinction of the different depositional environments that are commonly associated with basin floor fans. Previous studies and our sedimentological analysis allow good confidence in the discrimination of the different depositional environments of the outcropping Marnoso-Arenacea Formation fan system. One hundred and thirty-five samples were collected from mudstones in conjunction with sedimentary logging of 871 m of outcrops. Six lithofacies associations are described and interpreted to represent lobe axis, lobe fringe, fan fringe, contained interlobe, basin plain, and starved high depositional sub-environments. Palynofacies of these elements demonstrate turbidites to be rich in terrestrial organic matter, with sixteen categories of matter recognised. The abundances and proportions of particles varies between sub-environments, with lobe axis deposits containing the largest, densest particles, with a transition to ever smaller and lighter particles moving toward the basin plain. Fuzzy C-means statistical analysis was used to explore this trend. Distribution of organic matter is not random, but is dominated by hydrodynamic sorting and sequential fall-out of particles as turbidity currents passed across the basin. This allows a palynofacies classification scheme to be constructed to assist the identification of depositional environments of submarine fans, which may be combined with subsurface data to assist reservoir characterisation

    Taming Charge Transport in Semiconducting Polymers with Branched Alkyl Side Chains

    Get PDF
    National Research Fund of Luxembourg. Grant Number: 6932623; Croucher Foundation; Kodak Graduate Fellowship; Office of Naval Research. Grant Number: N00014-17-1-2214; U.S. Department of Energy. Grant Number: DE-AC02-76SF0051

    Taming Charge Transport in Semiconducting Polymers with Branched Alkyl Side Chains

    Get PDF
    The solid-state packing and polymer orientation relative to the substrate are key properties to control in order to achieve high charge carrier mobilities in organic field effect transistors (OFET). Intuitively, shorter side chains are expected to yield higher charge carrier mobilities because of a denser solid state packing motif and a higher ratio of charge transport moieties. However our findings suggest that the polymer chain orientation plays a crucial role in high-performing diketopyrrolopyrrole-based polymers. By synthesizing a series of DPP-based polymers with different branched alkyl side chain lengths, it is shown that the polymer orientation depends on the branched alkyl chain lengths and that the highest carrier mobilities are obtained only if the polymer adopts a mixed face-on/edge-on orientation, which allows the formation of 3D carrier channels in an otherwise edge-on-oriented polymer chain network. Time-of-flight measurements performed on the various polymer films support this hypothesis by showing higher out-of-plane carrier mobilities for the partially face-on-oriented polymers. Additionally, a favorable morphology is mimicked by blending a face-on polymer into an exclusively edge-on oriented polymer, resulting in higher charge carrier mobilities and opening up a new avenue for the fabrication of high performing OFET devices

    Self-sharpening induces jet-like structure in seafloor gravity currents

    Get PDF
    Gravity currents are the primary means by which sediments, solutes and heat are transported across the ocean-floor. Existing theory of gravity current flow employs a statistically-stable model of turbulent diffusion that has been extant since the 1960s. Here we present the first set of detailed spatial data from a gravity current over a rough seafloor that demonstrate that this existing paradigm is not universal. Specifically, in contrast to predictions from turbulent diffusion theory, self-sharpened velocity and concentration profiles and a stable barrier to mixing are observed. Our new observations are explained by statistically-unstable mixing and self-sharpening, by boundary-induced internal gravity waves; as predicted by recent advances in fluid dynamics. Self-sharpening helps explain phenomena such as ultra-long runout of gravity currents and restricted growth of bedforms, and highlights increased geohazard risk to marine infrastructure. These processes likely have broader application, for example to wave-turbulence interaction, and mixing processes in environmental flows

    Turbidite bed thickness statistics of architectural elements in a deep-marine confined mini-basin setting: Examples from the Grès d'Annot Formation, SE France

    No full text
    Statistical analysis of bed thickness was performed for sampled turbidite successions from well-documented architectural elements of the Grès d' Annot Formation to characterize confined deep-water mini-basins of the Tertiary foreland basin of SE France. The purpose was to use advanced statistical processing techniques in order to evaluate whether a discrimination of different architectural elements is feasible through observed statistical signatures of bed thickness. Statistical methods were focused on: i) fitting of widely used non-normal theoretical distribution models using robust non-parametric goodness-of-fit statistical tests, and ii) detecting the possible presence of non-random bed thickness clustering using existing and new clustering estimation methods. Results indicate that the bed thickness data are best characterized by a multi-modal lognormal distribution model which probably reflects a background sedimentological process. Several datasets exhibit power law as well as exponential thick-bedded tails. The data also exhibit non-random clustering of bed thickness. Discrimination of architectural elements in this confined turbidite succession seems to be feasible based on the characteristics of the observed composite lognormal distributions such as number and variability of the detected components. The estimation of the degree of facies clustering has potential for the discrimination of architectural elements in confined basin settings if used in conjunction with alternative estimation methods (such as periodogram estimation). This methodology may now be applied to other confined turbidite successions, be they outcrops with less certain architecture, or subsurface datasets with borehole imaging

    Timing and causes of forest fire at the K–Pg boundary

    No full text
    We report K–Pg-age deposits in Baja California, Mexico, consisting of terrestrial and shallow-marine materials re-sedimented onto the continental slope, including corals, gastropods, bivalves, shocked quartz grains, an andesitic tuff with a SHRIMP U–Pb age (66.12 ± 0.65 Ma) indistinguishable from that of the K–Pg boundary, and charred tree trunks. The overlying mudstones show an iridium anomaly and fungal and fern spores spikes. We interpret these heterogeneous deposits as a direct result of the Chicxulub impact and a mega-tsunami in response to seismically-induced landsliding. The tsunami backwash carried the megaflora offshore in high-density flows, remobilizing shallow-marine fauna and sediment en route. Charring of the trees at temperatures up to > 1000 °C took place in the interval between impact and arrival of the tsunami, which on the basis of seismic velocities and historic analogues amounted to only tens of minutes at most. This constrains the timing and causes of fires and the minimum distance from the impact site over which fires may be ignited

    Submarine pyroclastic deposits formed during the 20th May 2006 dome collapse of the Soufriere Hills Volcano, Montserrat

    Get PDF
    The 20th May 2006 lava dome collapse of the Soufrière Hills Volcano, Montserrat, had a total non-dense rock equivalent (non-DRE) collapse volume of approximately 115 × 106 m3. The majority of this volume was deposited into the ocean. The collapse was rapid, 85% of the mobilized volume being removed in just 35 min, giving peak pyroclastic flow flux of 66 × 103 m3 s−1. Channel and levee facies on the submarine flanks of the volcano and formation of a thick, steep-sided ridge, suggest that the largest and most dense blocks were transported proximally as a high concentration granular flow. Of the submerged volume, 30% was deposited from the base of this granular flow, forming a linear, high-relief ridge that extends 7 km from shore. The remaining 70% of the submerged volume comprises the finer grain sizes, which were transported at least 40 km by turbidity currents on gradients of <2°. At several localities, the May 2006 distal turbidity currents ran up 200 m of topography and eroded up to 20 cm of underlying substrate. Multiple turbidites are preserved, representing current reflection from the graben margins and deflection around topography. The high energy of the May 2006 collapse resulted in longer submarine run out than the larger (210 × 106 m3) Soufrière Hills dome collapse in July 2003
    corecore