157 research outputs found

    Cell cycle times of short-term cultures of brain cancers as predictors of survival

    Get PDF
    Tumour cytokinetics estimated in vivo as potential doubling times (Tpot values) have been found to range in a variety of human cancers from 2 days to several weeks and are often related to clinical outcome. We have previously developed a method to estimate culture cycle times of short-term cultures of surgical material for several tumour types and found, surprisingly, that their range was similar to that reported for Tpot values. As Tpot is recognised as important prognostic variable in cancer, we wished to determine whether culture cycle times had clinical significance. Brain tumour material obtained at surgery from 70 patients with glioblastoma, medulloblastoma, astrocytoma, oligodendroglioma and metastatic melanoma was cultured for 7 days on 96-well plates, coated with agarose to prevent proliferation of fibroblasts. Culture cycle times were estimated from relative 3H-thymidine incorporation in the presence and absence of cell division. Patients were divided into two groups on the basis of culture cycle times of ⩽10 days and >10 days and patient survival was compared. For patients with brain cancers of all types, median survival for the ⩽10-day and >10-day groups were 5.1 and 12.5 months, respectively (P=0.0009). For 42 patients with glioblastoma, the corresponding values were 6.5 and 9.0 months, respectively (P=0.03). Lower grade gliomas had longer median culture cycle times (16 days) than those of medulloblastomas (9.9 days), glioblastomas (9.8 days) or melanomas (6.7 days). We conclude that culture cycle times determined using short-term cultures of surgical material from brain tumours correlate with patient survival. Tumour cells thus appear to preserve important cytokinetic characteristics when transferred to culture

    The antitumour activity of 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in TNF receptor-1 knockout mice

    Get PDF
    5,6-dimethylxanthenone-4-acetic acid, a novel antivascular anticancer drug, has completed Phase I clinical trial. Its actions in mice include tumour necrosis factor induction, serotonin release, tumour blood flow inhibition, and the induction of tumour haemorrhagic necrosis and regression. We have used mice with a targeted disruption of the tumour necrosis factor receptor-1 gene as recipients for the colon 38 carcinoma to determine the role of tumour necrosis factor signalling in the action of 5,6-dimethylxanthenone-4-acetic acid. The pharmacokinetics of 5,6-dimethylxanthenone-4-acetic acid, as well as the degree of induced plasma and tissue tumour necrosis factor, were similar in tumour necrosis factor receptor-1−/− and wild-type mice. However, the maximum tolerated dose of 5,6-dimethylxanthenone-4-acetic acid was considerably higher in tumour necrosis factor receptor-1−/− mice (>100 mg kg−1) than in wild-type mice (27.5 mg kg−1). The antitumour activity of 5,6-dimethylxanthenone-4-acetic acid (25 mg kg−1) was strongly attenuated in tumour necrosis factor receptor-1−/− mice. However, the reduced toxicity in tumour necrosis factor receptor-1−/− mice allowed the demonstration that at a higher dose (50 mg kg−1), 5,6-dimethylxanthenone-4-acetic acid was curative and comparable in effect to that of a lower dose (25 mg kg−1) in wild-type mice. The 5,6-dimethylxanthenone-4-acetic acid -induced rise in plasma 5-hydroxyindoleacetic acid, used to reflect serotonin production in a vascular response, was larger in colon 38 tumour bearing than in non-tumour bearing tumour necrosis factor receptor-1−/− mice, but in each case the response was smaller than the corresponding response in wild-type mice. The results suggest an important role for tumour necrosis factor in mediating both the host toxicity and antitumour activity of 5,6-dimethylxanthenone-4-acetic acid, but also suggest that tumour necrosis factor can be replaced by other vasoactive factors in its antitumour action, an observation of relevance to current clinical studies

    Induction of endothelial cell apoptosis by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid

    Get PDF
    5,6-Dimethylxanthenone-4-acetic acid, synthesised in this laboratory, reduces tumour blood flow, both in mice and in patients on Phase I trial. We used TUNEL (TdT-mediated dUTP nick end labelling) assays to investigate whether apoptosis induction was involved in its antivascular effect. 5,6-Dimethylxanthenone-4-acetic acid induced dose-dependent apoptosis in vitro in HECPP murine endothelial cells in the absence of up-regulation of mRNA for tumour necrosis factor. Selective apoptosis of endothelial cells was detected in vivo in sections of Colon 38 tumours in mice within 30 min of administration of 5,6-Dimethylxanthenone-4-acetic acid (25 mg kg−1). TUNEL staining intensified with time and after 3 h, necrosis of adjacent tumour tissue was observed. Apoptosis of central vessels in splenic white pulp was also detected in tumour-bearing mice but not in mice without tumours. Apoptosis was not observed in liver tissue. No apoptosis was observed with the inactive analogue 8-methylxanthenone-4-acetic acid. Positive TUNEL staining of tumour vascular endothelium was evident in one patient in a Phase I clinical trial, from a breast tumour biopsy taken 3 and 24 h after infusion of 5,6-Dimethylxanthenone-4-acetic acid (3.1 mg m−2). Tumour necrosis and the production of tumour tumour necrosis factor were not observed. No apoptotic staining was seen in tumour biopsies taken from two other patients (doses of 3.7 and 4.9 mg m−2). We conclude that 5,6-Dimethylxanthenone-4-acetic acid can induce vascular endothelial cell apoptosis in some murine and human tumours. The action is rapid and appears to be independent of tumour necrosis factor induction

    Randomised phase II study of ASA404 combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer

    Get PDF
    ASA404 (5,6-dimethylxanthenone-4-acetic acid or DMXAA) is a small-molecule tumour-vascular disrupting agent (Tumour-VDA). This randomised phase II study evaluated ASA404 plus standard therapy of carboplatin and paclitaxel in patients with histologically confirmed stage IIIb or IV non-small cell lung cancer (NSCLC) not previously treated with chemotherapy. Patients were randomised to receive ⩽6 cycles of carboplatin area under the plasma concentration–time curve 6 mg ml−1 min and paclitaxel 175 mg m−2 (CP, n=36) or standard therapy plus ASA404 1200 mg m−2 (ASA404-CP, n=37). There was little change in the systemic exposure of either total or free carboplatin or paclitaxel on addition of ASA404. Safety profiles were similar and manageable in both groups, with most adverse effects attributed to standard therapy. Tumour response rate (31 vs 22%), median time to tumour progression (5.4 vs 4.4 months) and median survival (14.0 vs 8.8 months, hazard ratio 0.73, 95% CI 0.39, 1.38) were improved in the ASA404 combination group compared with the standard therapy group. In conclusion, this study establishes the feasibility of combining ASA404 with carboplatin and paclitaxel in patients with previously untreated, advanced NSCLC, demonstrating a manageable safety profile and lack of adverse pharmacokinetic interactions. The results indicate that there may be a benefit associated with ASA404, but this needs to be evaluated in a larger trial

    Validating TDP1 as an Inhibition Target for the Development of Chemosensitizers for Camptothecin-Based Chemotherapy Drugs.

    Get PDF
    Cancer chemotherapy sensitizers hold the key to maximizing the potential of standard anticancer treatments. We have a long-standing interest in developing and validating inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) as chemosensitizers for topoisomerase I poisons such as topotecan. Herein, by using thieno[2,3-b]pyridines, a class of TDP1 inhibitors, we showed that the inhibition of TDP1 can restore sensitivity to topotecan, results that are supported by TDP1 knockout cell experiments using CRISPR/Cas9. However, we also found that the restored sensitivity towards topoisomerase I inhibitors is likely regulated by multiple complementary DNA repair pathways. Our results showed that one of these pathways is likely modulated by PARP1, although it is also possible that other redundant and partially overlapping pathways may be involved in the DNA repair process. Our work thus raises the prospect of targeting multiple DNA repair pathways to increase the sensitivity to topoisomerase I inhibitors

    Cell killing and resistance in pre-operative breast cancer chemotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the recent development of technologies giving detailed images of tumours <it>in vivo</it>, direct or indirect ways to measure how many cells are actually killed by a treatment or are resistant to it are still beyond our reach.</p> <p>Methods</p> <p>We designed a simple model of tumour progression during treatment, based on descriptions of the key phenomena of proliferation, quiescence, cell killing and resistance, and giving as output the macroscopically measurable tumour volume and growth fraction. The model was applied to a database of the time course of volumes of breast cancer in patients undergoing pre-operative chemotherapy, for which the initial estimate of proliferating cells by the measure of the percentage of Ki67-positive cells was available.</p> <p>Results</p> <p>The analysis recognises different patterns of response to treatment. In one subgroup of patients the fitting implied drug resistance. In another subgroup there was a shift to higher sensitivity during the therapy. In the subgroup of patients where killing of cycling cells had the highest score, the drugs showed variable efficacy against quiescent cells.</p> <p>Conclusion</p> <p>The approach was feasible, providing items of information not otherwise available. Additional data, particularly sequential Ki67 measures, could be added to the system, potentially reducing uncertainty in estimates of parameter values.</p

    Evaluation of molecular descriptors for antitumor drugs with respect to noncovalent binding to DNA and antiproliferative activity

    Get PDF
    34 pages, 6 additional files, 5 tables, 4 figures.[Background ] Small molecules that bind reversibly to DNA are among the antitumor drugs currently used in chemotherapy. In the pursuit of a more rational approach to cancer chemotherapy based upon these molecules, it is necessary to exploit the interdependency between DNA-binding affinity, sequence selectivity and cytotoxicity. For drugs binding noncovalently to DNA, it is worth exploring whether molecular descriptors, such as their molecular weight or the number of potential hydrogen acceptors/donors, can account for their DNA-binding affinity and cytotoxicity.[Results] Fifteen antitumor agents, which are in clinical use or being evaluated as part of the National Cancer Institute’s drug screening effort, were analyzed in silico to assess the contribution of various molecular descriptors to their DNA-binding affinity, and the capacity of the descriptors and DNA-binding constants for predicting cell cytotoxicity. Equations to predict drug-DNA binding constants and growth-inhibitory concentrations were obtained by multiple regression following rigorous statistical procedures.[Conclusions] For drugs binding reversibly to DNA, both their strength of binding and their cytoxicity are fairly predicted from molecular descriptors by using multiple regression methods. The equations derived may be useful for rational drug design. The results obtained agree with that compounds more active across the National Cancer Institute’s 60-cell line data set tend to have common structural features.Supported by a grant from the former Spanish Ministry of Education and Science (BFU2007-60998) and the FEDER program of the European Community.Peer reviewe
    corecore