760 research outputs found

    Declining Sex Ratio in a First Nation Community

    Get PDF
    Members of the Aamjiwnaang First Nation community near Sarnia, Ontario, Canada, voiced concerns that there appeared to be fewer male children in their community in recent years. In response to these concerns, we assessed the sex ratio (proportion of male births) of the Aamjiwnaang First Nation over the period 1984–2003 as part of a community-based participatory research project. The trend in the proportion of male live births of the Aamjiwnaang First Nation has been declining continuously from the early 1990s to 2003, from an apparently stable sex ratio prior to this time. The proportion of male births (m) showed a statistically significant decline over the most recent 10-year period (1994–2003) (m = 0.412, p = 0.008) with the most pronounced decrease observed during the most recent 5 years (1999–2003) (m = 0.348, p = 0.006). Numerous factors have been associated with a decrease in the proportion of male births in a population, including a number of environmental and occupational chemical exposures. This community is located within the Great Lakes St. Clair River Area of Concern and is situated immediately adjacent to several large petrochemical, polymer, and chemical industrial plants. Although there are several potential factors that could be contributing to the observed decrease in sex ratio of the Aamjiwnaang First Nation, the close proximity of this community to a large aggregation of industries and potential exposures to compounds that may influence sex ratios warrants further assessment into the types of chemical exposures for this population. A community health survey is currently under way to gather more information about the health of the Aamjiwnaang community and to provide additional information about the factors that could be contributing to the observed decrease in the proportion of male births in recent years

    Mean first-passage times of non-Markovian random walkers in confinement

    Get PDF
    The first-passage time (FPT), defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role to quantify the efficiency of processes as varied as diffusion-limited reactions, target search processes or spreading of diseases. Most methods to determine the FPT properties in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects can not be neglected. Examples of non Markovian dynamics include single-file diffusion in narrow channels or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics \cite{turiv2013effect}, dense soft colloids or viscoelastic solution. Here, we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean FPT of a Gaussian non-Markovian random walker to a target point. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the trajectory of the random walker in the future of the first-passage event, which are shown to govern the FPT kinetics.This analysis is applicable to a broad range of stochastic processes, possibly correlated at long-times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes including the emblematic case of the Fractional Brownian Motion in one or higher dimensions. These results show, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.Comment: Submitted version. Supplementary Information can be found on the Nature website : http://www.nature.com/nature/journal/v534/n7607/full/nature18272.htm

    Don’t turn your back on the symptoms of psychosis : a proof-of-principle, quasi-experimental public health trial to reduce the duration of untreated psychosis in Birmingham, UK

    Get PDF
    Background: Reducing the duration of untreated psychosis (DUP) is an aspiration of international guidelines for first episode psychosis; however, public health initiatives have met with mixed results. Systematic reviews suggest that greater focus on the sources of delay within care pathways, (which will vary between healthcare settings) is needed to achieve sustainable reductions in DUP (BJP 198: 256-263; 2011). Methods/Design: A quasi-experimental trial, comparing a targeted intervention area with a ‘detection as usual’ area in the same city. A proof-of–principle trial, no a priori assumptions are made regarding effect size; key outcome will be an estimate of the potential effect size for a definitive trial. DUP and number of new cases will be collected over an 18-month period in target and control areas and compared; historical data on DUP collected in both areas over the previous three years, will serve as a benchmark. The intervention will focus on reducing two significant DUP component delays within the overall care pathway: delays within the mental health service and help-seeking delay. Discussion: This pragmatic trial will be the first to target known delays within the care pathway for those with a first episode of psychosis. If successful, this will provide a generalizable methodology that can be implemented in a variety of healthcare contexts with differing sources of delay. Trial registration: http://www.controlled-trials.com/ISRCTN45058713 Keywords: Public mental health campaign, First-episode psychosis, Early detection, Duration of untreated psychosis, Youth mental healt

    A photonic quantum information interface

    Full text link
    Quantum communication is the art of transferring quantum states, or quantum bits of information (qubits), from one place to another. On the fundamental side, this allows one to distribute entanglement and demonstrate quantum nonlocality over significant distances. On the more applied side, quantum cryptography offers, for the first time in human history, a provably secure way to establish a confidential key between distant partners. Photons represent the natural flying qubit carriers for quantum communication, and the presence of telecom optical fibres makes the wavelengths of 1310 and 1550 nm particulary suitable for distribution over long distances. However, to store and process quantum information, qubits could be encoded into alkaline atoms that absorb and emit at around 800 nm wavelength. Hence, future quantum information networks made of telecom channels and alkaline memories will demand interfaces able to achieve qubit transfers between these useful wavelengths while preserving quantum coherence and entanglement. Here we report on a qubit transfer between photons at 1310 and 710 nm via a nonlinear up-conversion process with a success probability greater than 5%. In the event of a successful qubit transfer, we observe strong two-photon interference between the 710 nm photon and a third photon at 1550 nm, initially entangled with the 1310 nm photon, although they never directly interacted. The corresponding fidelity is higher than 98%.Comment: 7 pages, 3 figure

    Heralded single photon absorption by a single atom

    Full text link
    The emission and absorption of single photons by single atomic particles is a fundamental limit of matter-light interaction, manifesting its quantum mechanical nature. At the same time, as a controlled process it is a key enabling tool for quantum technologies, such as quantum optical information technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission and absorption will allow implementing quantum networking scenarios [1, 7, 8, 9], where photonic communication of quantum information is interfaced with its local processing in atoms. In studies of single-photon emission, recent progress includes control of the shape, bandwidth, frequency, and polarization of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption of a single photon by a single atom is much less investigated; proposals exist but only very preliminary steps have been taken experimentally such as detecting the attenuation and phase shift of a weak laser beam by a single atom [21, 22], and designing an optical system that covers a large fraction of the full solid angle [23, 24, 25]. Here we report the interaction of single heralded photons with a single trapped atom. We find strong correlations of the detection of a heralding photon with a change in the quantum state of the atom marking absorption of the quantum-correlated heralded photon. In coupling a single absorber with a quantum light source, our experiment demonstrates previously unexplored matter-light interaction, while opening up new avenues towards photon-atom entanglement conversion in quantum technology.Comment: 10 pages, 4 figure

    Why alternative teenagers self-harm: exploring the link between non-suicidal self-injury, attempted suicide and adolescent identity

    Get PDF
    Background: The term ‘self-harm’ encompasses both attempted suicide and non-suicidal self-injury (NSSI). Specific adolescent subpopulations such as ethnic or sexual minorities, and more controversially, those who identify as ‘Alternative’ (Goth, Emo) have been proposed as being more likely to self-harm, while other groups such as ‘Jocks’ are linked with protective coping behaviours (for example exercise). NSSI has autonomic (it reduces negative emotions) and social (it communicates distress or facilitates group ‘bonding’) functions. This study explores the links between such aspects of self-harm, primarily NSSI, and youth subculture.<p></p> Methods: An anonymous survey was carried out of 452 15 year old German school students. Measures included: identification with different youth cultures, i.e. Alternative (Goth, Emo, Punk), Nerd (academic) or Jock (athletic); social background, e.g. socioeconomic status; and experience of victimisation. Self-harm (suicide and NSSI) was assessed using Self-harm Behavior Questionnaire and the Functional Assessment of Self-Mutilation (FASM).<p></p> Results: An “Alternative” identity was directly (r ≈ 0.3) and a “Jock” identity inversely (r ≈ -0.1) correlated with self-harm. “Alternative” teenagers self-injured more frequently (NSSI 45.5% vs. 18.8%), repeatedly self-injured, and were 4–8 times more likely to attempt suicide (even after adjusting for social background) than their non-Alternative peers. They were also more likely to self-injure for autonomic, communicative and social reasons than other adolescents.<p></p> Conclusions: About half of ‘Alternative’ adolescents’ self-injure, primarily to regulate emotions and communicate distress. However, a minority self-injure to reinforce their group identity, i.e. ‘To feel more a part of a group’

    Intracellular Electric Field and pH Optimize Protein Localization and Movement

    Get PDF
    Mammalian cell function requires timely and accurate transmission of information from the cell membrane (CM) to the nucleus (N). These pathways have been intensively investigated and many critical components and interactions have been identified. However, the physical forces that control movement of these proteins have received scant attention. Thus, transduction pathways are typically presented schematically with little regard to spatial constraints that might affect the underlying dynamics necessary for protein-protein interactions and molecular movement from the CM to the N. We propose messenger protein localization and movements are highly regulated and governed by Coulomb interactions between: 1. A recently discovered, radially directed E-field from the NM into the CM and 2. Net protein charge determined by its isoelectric point, phosphorylation state, and the cytosolic pH. These interactions, which are widely applied in elecrophoresis, provide a previously unknown mechanism for localization of messenger proteins within the cytoplasm as well as rapid shuttling between the CM and N. Here we show these dynamics optimize the speed, accuracy and efficiency of transduction pathways even allowing measurement of the location and timing of ligand binding at the CM –previously unknown components of intracellular information flow that are, nevertheless, likely necessary for detecting spatial gradients and temporal fluctuations in ligand concentrations within the environment. The model has been applied to the RAF-MEK-ERK pathway and scaffolding protein KSR1 using computer simulations and in-vitro experiments. The computer simulations predicted distinct distributions of phosphorylated and unphosphorylated components of this transduction pathway which were experimentally confirmed in normal breast epithelial cells (HMEC)

    Is council tax valuation band a predictor of mortality?

    Get PDF
    BACKGROUND: All current UK indices of socio-economic status have inherent problems, especially those used to govern resource allocation to the health sphere. The search for improved markers continues: this study proposes and tests the possibility that Council Tax Valuation Band (CTVB) might match requirements. PRESENTATION OF THE HYPOTHESIS: To determine if there is an association between CTVB of final residence and mortality risk using the death registers of a UK general practice. TESTING THE HYPOTHESIS: Standardised death rates and odds ratios (ORs) for groups defined by CTVB of dwelling (A – H) were calculated using one in four denominator samples from the practice lists. Analyses were repeated three times – between number of deaths and CTVB of residence of deceased 1992 – 1994 inclusive, 1995 – 1997 inc., 1998 – 2000 inc. In 856 deaths there were consistent and significant differences in death rates between CTVBs: above average for bands A and B residents; below average for other band residents. There were significantly higher ORs for A, B residents who were female and who died prematurely (before average group life expectancy). IMPLICATIONS OF THE HYPOTHESIS: CTVB of final residence appears to be a proxy marker of mortality risk and could be a valuable indicator of health needs resource at household level. It is worthy of further exploration

    Immunological and Cardiometabolic Risk Factors in the Prediction of Type 2 Diabetes and Coronary Events: MONICA/KORA Augsburg Case-Cohort Study

    Get PDF
    BACKGROUND: This study compares inflammation-related biomarkers with established cardiometabolic risk factors in the prediction of incident type 2 diabetes and incident coronary events in a prospective case-cohort study within the population-based MONICA/KORA Augsburg cohort. METHODS AND FINDINGS: Analyses for type 2 diabetes are based on 436 individuals with and 1410 individuals without incident diabetes. Analyses for coronary events are based on 314 individuals with and 1659 individuals without incident coronary events. Mean follow-up times were almost 11 years. Areas under the receiver-operating characteristic curve (AUC), changes in Akaike's information criterion (ΔAIC), integrated discrimination improvement (IDI) and net reclassification index (NRI) were calculated for different models. A basic model consisting of age, sex and survey predicted type 2 diabetes with an AUC of 0.690. Addition of 13 inflammation-related biomarkers (CRP, IL-6, IL-18, MIF, MCP-1/CCL2, IL-8/CXCL8, IP-10/CXCL10, adiponectin, leptin, RANTES/CCL5, TGF-β1, sE-selectin, sICAM-1; all measured in nonfasting serum) increased the AUC to 0.801, whereas addition of cardiometabolic risk factors (BMI, systolic blood pressure, ratio total/HDL-cholesterol, smoking, alcohol, physical activity, parental diabetes) increased the AUC to 0.803 (ΔAUC [95% CI] 0.111 [0.092-0.149] and 0.113 [0.093-0.149], respectively, compared to the basic model). The combination of all inflammation-related biomarkers and cardiometabolic risk factors yielded a further increase in AUC to 0.847 (ΔAUC [95% CI] 0.044 [0.028-0.066] compared to the cardiometabolic risk model). Corresponding AUCs for incident coronary events were 0.807, 0.825 (ΔAUC [95% CI] 0.018 [0.013-0.038] compared to the basic model), 0.845 (ΔAUC [95% CI] 0.038 [0.028-0.059] compared to the basic model) and 0.851 (ΔAUC [95% CI] 0.006 [0.003-0.021] compared to the cardiometabolic risk model), respectively. CONCLUSIONS: Inclusion of multiple inflammation-related biomarkers into a basic model and into a model including cardiometabolic risk factors significantly improved the prediction of type 2 diabetes and coronary events, although the improvement was less pronounced for the latter endpoint

    Treating cofactors can reverse the expansion of a primary disease epidemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cofactors, "nuisance" conditions or pathogens that affect the spread of a primary disease, are likely to be the norm rather than the exception in disease dynamics. Here we present a "simplest possible" demographic model that incorporates two distinct effects of cofactors: that on the transmission of the primary disease from an infected host bearing the cofactor, and that on the acquisition of the primary disease by an individual that is not infected with the primary disease but carries the cofactor.</p> <p>Methods</p> <p>We constructed and analyzed a four-patch compartment model that accommodates a cofactor. We applied the model to HIV spread in the presence of the causal agent of genital schistosomiasis, <it>Schistosoma hematobium</it>, a pathogen commonly co-occurring with HIV in sub-Saharan Africa.</p> <p>Results</p> <p>We found that cofactors can have a range of effects on primary disease dynamics, including shifting the primary disease from non-endemic to endemic, increasing the prevalence of the primary disease, and reversing demographic growth when the host population bears only the primary disease to demographic decline. We show that under parameter values based on the biology of the HIV/<it>S. haematobium </it>system, reduction of the schistosome-bearing subpopulations (e.g. through periodic use of antihelminths) can slow and even reverse the spread of HIV through the host population.</p> <p>Conclusions</p> <p>Typical single-disease models provide estimates of future conditions and guidance for direct intervention efforts relating only to the modeled primary disease. Our results suggest that, in circumstances under which a cofactor affects the disease dynamics, the most effective intervention effort might not be one focused on direct treatment of the primary disease alone. The cofactor model presented here can be used to estimate the impact of the cofactor in a particular disease/cofactor system without requiring the development of a more complicated model which incorporates many other specific aspects of the chosen disease/cofactor pair. Simulation results for the HIV/<it>S. haematobium </it>system have profound implications for disease management in developing areas, in that they provide evidence that in some cases treating cofactors may be the most successful and cost-effective way to slow the spread of primary diseases.</p
    corecore