10,426 research outputs found

    Prediction Possibility in the Fractal Overlap Model of Earthquakes

    Full text link
    The two-fractal overlap model of earthquake shows that the contact area distribution of two fractal surfaces follows power law decay in many cases and this agrees with the Guttenberg-Richter power law. Here, we attempt to predict the large events (earthquakes) in this model through the overlap time-series analysis. Taking only the Cantor sets, the overlap sizes (contact areas) are noted when one Cantor set moves over the other with uniform velocity. This gives a time series containing different overlap sizes. Our numerical study here shows that the cumulative overlap size grows almost linearly with time and when the overlapsizes are added up to a pre-assigned large event (earthquake) and then reset to `zero' level, the corresponding cumulative overlap sizes grows upto some discrete (quantised) levels. This observation should help to predict the possibility of `large events' in this (overlap) time series.Comment: 6 pages, 6 figures. To be published as proc. NATO conf. CMDS-10, Soresh, Israel, July 2003. Eds. D. J. Bergman & E. Inan, KLUWER PUB

    A new purple sulfur bacterium from saline littoral sediments, Thiorhodotvibrio winogradskyi gen. nov. and sp. nov.

    Get PDF
    Two strains of a new purple sulfur bacterium were isolated in pure culture from the littoral sediment of a saline lake (Mahoney Lake, Canada) and a marine microbial mat from the North Sea island of Mellum, respectively. Single cells were vibrioid-to spirilloid-shaped and motile by means of single polar flagella. Intracellular photosynthetic membranes were of the vesicular type. As photosynthetic pigments, bacteriochlorophyll a and the carotenoids lycopene, rhodopin, anhydrorhodovibrin, rhodovibrin and spirilloxanthin were present. Hydrogen sulfide and elemental sulfur were used under anoxic conditions for phototrophic growth. In addition one strain (06511) used thiosulfate. Carbon dioxide, acetate and pyruvate were utilized by both strains as carbon sources. Depending on the strain propionate, succinate, fumarate, malate, tartrate, malonate, glycerol or peptone may additionally serve as carbon sources in the light. Optimum growth rates were obtained at pH 7.2, 33 °C, 50 mol m-2 s-1 intensity of daylight fluorescent tubes and a salinity of 2.2–3.2% NaCl. During growth on sulfide, up to ten small sulfur globules were formed inside the cells. The strains grew microaerophilic in the dark and exhibited high specific respiration rates. No vitamins were required for growth. The DNA base composition was 61.0–62.4 mol% G+C. The newly isolated bacterium belongs to the family chromatiaceae and is described as a member of a new genus and species, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. with the type strain SSP1, DSM No. 6702

    Reinforcement learning in populations of spiking neurons

    Get PDF
    Population coding is widely regarded as a key mechanism for achieving reliable behavioral responses in the face of neuronal variability. But in standard reinforcement learning a flip-side becomes apparent. Learning slows down with increasing population size since the global reinforcement becomes less and less related to the performance of any single neuron. We show that, in contrast, learning speeds up with increasing population size if feedback about the populationresponse modulates synaptic plasticity in addition to global reinforcement. The two feedback signals (reinforcement and population-response signal) can be encoded by ambient neurotransmitter concentrations which vary slowly, yielding a fully online plasticity rule where the learning of a stimulus is interleaved with the processing of the subsequent one. The assumption of a single additional feedback mechanism therefore reconciles biological plausibility with efficient learning

    Endoscopic navigation in the absence of CT imaging

    Full text link
    Clinical examinations that involve endoscopic exploration of the nasal cavity and sinuses often do not have a reference image to provide structural context to the clinician. In this paper, we present a system for navigation during clinical endoscopic exploration in the absence of computed tomography (CT) scans by making use of shape statistics from past CT scans. Using a deformable registration algorithm along with dense reconstructions from video, we show that we are able to achieve submillimeter registrations in in-vivo clinical data and are able to assign confidence to these registrations using confidence criteria established using simulated data.Comment: 8 pages, 3 figures, MICCAI 201

    Forward and hybrid path-integral methods in photoelectron holography: Sub-barrier corrections, initial sampling, and momentum mapping

    Get PDF
    We construct two strong-field path integral methods with full Coulomb distortion, in which the quantum pathways are mimicked by interfering electron orbits: the rate-based CQSFA (R-CQSFA) and the hybrid forward-boundary CQSFA (H-CQSFA). The methods have the same starting point as the standard Coulomb quantum-orbit strong-field approximation (CQSFA), but their implementation does not require preknowledge of the orbits' dynamics. These methods are applied to ultrafast photoelectron holography. In the rate-based method, electron orbits are forward propagated and we derive a nonadiabatic ionization rate from the CQSFA, which includes sub-barrier Coulomb corrections and is used to weight the initial orbit ensemble. In the H-CQSFA, the initial ensemble provides initial guesses for a subsequent boundary problem and serves to include or exclude specific momentum regions, but the ionization probabilities associated with individual trajectories are computed from sub-barrier complex integrals. We perform comparisons with the standard CQSFA and ab initio methods, which show that the standard, purely boundary-type implementation of the CQSFA leaves out whole sets of trajectories. We show that the sub-barrier Coulomb corrections broaden the resulting photoelectron momentum distributions (PMDs) and improve the agreement of the R-CQSFA with the H-CQSFA and other approaches. We probe different initial sampling distributions, uniform and otherwise, and their influence on the PMDs. We find that initial biased sampling emphasizes rescattering ridges and interference patterns in high-energy ranges, while an initial uniform sampling guarantees accurate modeling of the holographic patterns near the ionization threshold or polarization axis. Our results are explained using the initial to final momentum mapping for different types of interfering trajectories

    Synergistic Effect of a Plant-Derived Protein Hydrolysate and Arbuscular Mycorrhizal Fungi on Eggplant Grown in Open Fields: A Two-Year Study

    Get PDF
    Plant biostimulants, such as plant protein hydrolysates (PHs) and arbuscular mycorrhizal fungi (AM), are natural products capable of increasing the yield and quality of crops and decreasing the ecological impact of plant growing cycles. However, there is little research on the mutual application of different categories of biostimulants (microbial and non-microbial). The current study was conducted to examine the effects of "Trainer" PH application (0 or 3 mL L-1) and AM (R. irregularis) inoculation on the growth, yield, quality and nitrogen indices of "Birgah" F-1 eggplant cultivated for two years (2020 and 2021). Results revealed that the combined application of PH and AM significantly enhanced total and marketable yields, average marketable fruit weight and number of marketable fruits by 23.7%, 36.4%, 19.0% and 11.1% compared to non-treated plants (control), respectively. Moreover, biostimulants increased the soluble solids content (SSC), chlorogenic acid, total anthocyanins, K and Mg in the fruits by 16%, 4.6%, 6.4%, 8.6% and 23.9% compared to control plants, respectively. Interestingly, the mutual application of PH and AM improved fruit quality by reducing the glycoalkaloid concentration (-19.8%) and fruit browning potential (-38%). Furthermore, both biostimulants exerted a synergistic action, enhancing nitrogen use efficiency and nitrogen uptake efficiency by 26.7% and 18.75%, respectively. On the other hand, productive and fruit-quality features were significantly influenced by the year due to remarkable differences in terms of maximum temperature between the first and second cultivation cycles. Overall, our research underlined that PH and AM can positively interact to improve the performance of eggplant cultivated in open fields

    Quantum Storage of Photonic Entanglement in a Crystal

    Full text link
    Entanglement is the fundamental characteristic of quantum physics. Large experimental efforts are devoted to harness entanglement between various physical systems. In particular, entanglement between light and material systems is interesting due to their prospective roles as "flying" and stationary qubits in future quantum information technologies, such as quantum repeaters and quantum networks. Here we report the first demonstration of entanglement between a photon at telecommunication wavelength and a single collective atomic excitation stored in a crystal. One photon from an energy-time entangled pair is mapped onto a crystal and then released into a well-defined spatial mode after a predetermined storage time. The other photon is at telecommunication wavelength and is sent directly through a 50 m fiber link to an analyzer. Successful transfer of entanglement to the crystal and back is proven by a violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality by almost three standard deviations (S=2.64+/-0.23). These results represent an important step towards quantum communication technologies based on solid-state devices. In particular, our resources pave the way for building efficient multiplexed quantum repeaters for long-distance quantum networks.Comment: 5 pages, 3 figures + supplementary information; fixed typo in ref. [36

    Gulf of Mexico oil blowout increases risks to globally threatened species

    Get PDF
    Fourteen marine species in the Gulf of Mexico are protected by the US Endangered Species Act, the Marine Mammal Protection Act, and the Migratory Bird Treaty Act. As the British Petroleum oil spill recovery and remediation proceed, species internationally recognized as having an elevated risk of extinction should also receive priority for protection and restoration efforts, whether or not they have specific legal protection. Forty additional marine species-unprotected by any federal laws-occur in the Gulf and are listed as threatened on the International Union for Conservation of Nature's (IUCN) Red List. The Red List assessment process scientifically evaluates species' global status and is therefore a key mechanism for transboundary impact assessments and for coordinating international conservation action. Environmental impact assessments conducted for future offshore oil and gas development should incorporate available data on globally threatened species, including species on the IUCN Red List. This consideration is particularly important because US Natural Resource Damage Assessments may not account for injury to highly migratory, globally threatened species. © 2011 by American Institute of Biological Sciences. All rights reserved.published_or_final_versio
    corecore