26 research outputs found

    Heartbeat of the Sun from Principal Component Analysis and prediction of solar activity on a millenium timescale

    Get PDF
    yesWe derive two principal components (PCs) of temporal magnetic field variations over the solar cycles 21–24 from full disk magnetograms covering about 39% of data variance, with σ = 0.67. These PCs are attributed to two main magnetic waves travelling from the opposite hemispheres with close frequencies and increasing phase shift. Using symbolic regeression analysis we also derive mathematical formulae for these waves and calculate their summary curve which we show is linked to solar activity index. Extrapolation of the PCs backward for 800 years reveals the two 350-year grand cycles superimposed on 22 year-cycles with the features showing a remarkable resemblance to sunspot activity reported in the past including the Maunder and Dalton minimum. The summary curve calculated for the next millennium predicts further three grand cycles with the closest grand minimum occurring in the forthcoming cycles 26–27 with the two magnetic field waves separating into the opposite hemispheres leading to strongly reduced solar activity. These grand cycle variations are probed by α − Ω dynamo model with meridional circulation. Dynamo waves are found generated with close frequencies whose interaction leads to beating effects responsible for the grand cycles (350–400 years) superimposed on a standard 22 year cycle. This approach opens a new era in investigation and confident prediction of solar activity on a millenium timescale

    Response rates and selection problems, with emphasis on mental health variables and DNA sampling, in large population-based, cross-sectional and longitudinal studies of adolescents in Norway

    Get PDF
    Background Selection bias is a threat to the internal validity of epidemiological studies. In light of a growing number of studies which aim to provide DNA, as well as a considerable number of invitees who declined to participate, we discuss response rates, predictors of lost to follow-up and failure to provide DNA, and the presence of possible selection bias, based on five samples of adolescents. Methods We included nearly 7,000 adolescents from two longitudinal studies of 18/19 year olds with two corresponding cross-sectional baseline studies at age 15/16 (10th graders), and one cross-sectional study of 13th graders (18/19 years old). DNA was sampled from the cheek mucosa of 18/19 year olds. Predictors of lost to follow-up and failure to provide DNA were studied by Poisson regression. Selection bias in the follow-up at age 18/19 was estimated through investigation of prevalence ratios (PRs) between selected exposures (physical activity, smoking) and outcome variables (general health, mental distress, externalizing problems) measured at baseline. Results Out of 5,750 who participated at age 15/16, we lost 42% at follow-up at age 18/19. The percentage of participants who gave their consent to DNA provision was as high as the percentage that consented to a linkage of data with other health registers and surveys, approximately 90%. Significant predictors of lost to follow-up and failure to provide DNA samples in the present genetic epidemiological study were: male gender; non-western ethnicity; postal survey compared with school-based; low educational plans; low education and income of father; low perceived family economy; unmarried parents; poor self-reported health; externalized symptoms and smoking, with some differences in subgroups of ethnicity and gender. The association measures (PRs) were quite similar among participants and all invitees, with some minor discrepancies in subgroups of non-western boys and girls. Conclusions Lost to follow-up had marginal impact on the estimated prevalence ratios. It is not likely that the invitation to provide DNA influenced the response rates of 18/19 year olds. Non-western ethnicity, male gender and characteristics related to a low social class and general and mental health problems measured at baseline are associated with lost to follow-up and failure to provide DNA

    Dynamo models of the solar cycle

    No full text
    corecore