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Abstract

Software-defined radio (SDR) describes radio transceivers implemented in software that executes on general-purpose
hardware. SDR combined with cloud computing technology will reshape the wireless access infrastructure, enabling
computing resource sharing and centralized digital-signal processing (DSP). SDR clouds have different constraints
than general-purpose grids or clouds: real-time response to user session requests and real-time execution of the
corresponding DSP chains. This article addresses the SDR cloud computing resource management problem. We show
that the maximum traffic load that a single resource allocator (RA) can handle is limited. It is a function of the RA
complexity and the call setup delay and user blocking probability constraints. We derive the RA capacity analytically
and provide numerical examples. The analysis demonstrates the fundamental tradeoffs between short call setup
delays (few processors) and low blocking probability (many processors). The simulation results demonstrate the
feasibility of a distributed resource management and the necessity of adapting the processor assignment to RAs
according to the given traffic load distribution. These results provide new insights and guidelines for designing data
centers and distributed resource management methods for SDR clouds.

1 Introduction
Wireless communications technology continuously
improves and already facilitates the provisioning of a wide
variety of advanced communications services at competi-
tive prices. Whereas current systems provide data rates of
a few mega-bits per second (Mbps), 4G systems will offer
up to 100Mbps per user. A few seconds may be necessary
today before a connection is established between the user
equipment and the network. Long term evolution (LTE)
and LTE-Advanced (LTE-A) promise connection estab-
lishment times of less than 50 and 10ms, respectively,
[1,2].
Base stations are the wireless access points of cellular

communications systems. They comprise antennas and
analog and digital signal processing resources for imple-
menting radio transmitters and receivers. The network
operator deploys base station resources, that is, wireless
transceivers, as a function of the expected peak load. The
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goal is guaranteeing a certain quality figure, for exam-
ple, the probability of granting a user service request.
Providing resources for the worst case scenario however
leads to long idle times and resource inefficiencies because
of the sporadic use of wireless communications services
[3]. Deploying fewer resources would increase the mean
resource utilization while increasing the user rejection
probability. Base stations may be shared between radio
operators, but temporarily unused resources can still
hardly be reassigned for other purposes. Radio operators
thus purchase, maintain, and update considerably more
resources than needed for most of the time (Figure 1). We
therefore suggest a more efficient and scalable infrastruc-
ture, the SDR cloud [4].
A software-defined radio (SDR) cloud comprises a set

of distributed antenna sites that connect to one or sev-
eral data centers through low-latency and high-bandwidth
communication links. The antenna sites process the radio
frequency (RF) signals and convert signals from analog
to digital and vice versa. The digital data is processed
entirely in the data center, employing SDR and cloud
computing technology.
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Figure 1 Single sector traffic. Typical weekday traffic pattern within
an antenna sector in a city center.

SDR describes wireless transceivers that implement
a significant part of the physical layer signal process-
ing (DSP) in software that executes on general-purpose
hardware [5]. SDR applications or waveforms define the
transceiver functionality of future radio equipment. This
facilitates dynamic reconfigurations or radio transceivers,
changing their transmission modes through changes in
the software.
Cloud computing provides IT services to clients with-

out reference to the infrastructure that hosts the services
[6]. The cloud is a generic platform for different business
types, from small-scale to very-large scale. The upfront
cost is minimal as the infrastructure is provided by the
cloud operator, who rents resources to cloud clients. The
elasticity of clouds permits business grows without long-
term planning and resource preallocations. A pay-per-use
businessmodel on top of a virtualized computing resource
pool enables resource sharing and on-demand resource
provisioning. Computing resources (hardware and soft-
ware) can then be dynamically allocated and efficiently
used, ensuring faster amortization (CAPEX) and better
scalability as well as savings in power consumption, secu-
rity, maintenance and software licensing, among others
(OPEX).
The SDR cloud provides essentially the same benefits

as a general purpose cloud. It inherits the resource-as-
a-service and pay-per-use business concepts: computing
power (infrastructure as a service—IaaS), system software
(platform as a service—PaaS), and applications (software
as a service—SaaS) will be provided on demand and with-
out knowledge of the physical location and types of CPUs,
discs, software repositories, and so forth.
A single data center is shared between several radio

operators and thousands of end users. (Some 100,000 user
sessions may be active at the same time in a city of one

million or more inhabitants.) Virtualization is employed
for ensuring secure and fair resource sharing, where one
radio operator—the SDR cloud client—is not aware of oth-
ers using the same physical machines. Different business
models or agreements are possible. A minimum set of
resources may be guaranteed to each radio operator, for
instance. The remaining or unused resources can then be
shared—fairly or competitively—as a function of the mar-
ket, environment, or policy, among others. This requires
a flexible, though efficient computing resource manage-
ment framework as a basis for the SDR cloud business.
Such framework, in other words, plays an essential role
for the deployment and operation of SDR clouds. It, par-
ticularly, needs to ensure real-time resource allocation
and execution in dynamic environments with different
resource and service constraints. This is the topic of this
article.
This article elaborates a relation between the wireless

communications system requirements or constraints and
the SDR cloud computing resource management before
deriving optimal solutions for the high-level resource
provisioning. Each service request requires loading the
corresponding transceiver waveform. Real-time resource
provisioning and hard real-time execution needs to be
ensured for seamless service provisioning. The SDR cloud
resource allocator (RA) will therefore determine the map-
ping of waveforms to the available computing resources
on demand and under stringent timing and resource con-
straints. We show that the maximum traffic load that a
single RA can handle is limited. It is a function of the com-
plexity of the resource allocation algorithm, the call setup
delay, and the user rejection or blocking probability. The
radio access technology specifies the maximum call setup
delay, whereas the radio operator determines a block-
ing probability target. We introduce a general execution
time model for characterizing the complexity of different
resource allocation algorithms and derive expressions for
the average call setup delay andmaximum traffic load. The
results show that SDR cloud data centers can be efficiently
managed in a distributed way. They provide guidelines for
designing data centers and distributed resource manage-
ment methods for SDR clouds.
The rest of the article is organized as follows: After

providing some background on computing resource man-
agement methods and algorithms (Section 2), we identify
the problem (Section 3) and elaborate a RA complex-
ity model (Section 4). In the central part of the arti-
cle, we define and solve an optimization problem for
assigning computing resources to an RA as a function
of the environmental parameters (Section 5). We finally
apply our solution for managing the resources associ-
ated to a single radio cell (Section 6) and multiple cells
(Sections 7 and 8) under different wireless communica-
tions traffic characteristic.
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2 Background
Massively parallel computing architectures will domi-
nate the high-performance computing landscape. A plat-
form with a large number of parallel processors is more
suitable for executing many applications than a single
powerful processor [7]. The high and heterogeneous com-
puting demands of SDR applications, in particular, are
executed more efficiently on a multiprocessing execu-
tion environment [8,9]. Empirical studies have shown that
scheduling hard real-time tasks on many-core processors
is challenging [10,11]. Sophisticated resource allocation
algorithms are consequently necessary for managing the
real-time computing demands and the limited computing
resources.
Distributed computing has a long research record. The

multiprocessor mapping and scheduling problem, in par-
ticular, has been vastly investigated in the heterogeneous
computing context [12-14]. Heterogeneous computing
refers to a coordinated use of distributed and hetero-
geneous computing resources [15]. It is similar to grid
computing [16] or metacomputing [17].
It is well known that the computing resource alloca-

tion problem is NP-complete, in general [18]. Heuristic
approaches were therefore proposed, presenting a poly-
nomial relation between the problem size and the com-
puting complexity. Grid or cloud computing RAs dispatch
computing jobs or independent task for their distributed
execution. Grid computing workloads exhibit little intra-
job parallelism, the average job completion time is several
hours, and typical job inter-arrival times are in the order
of seconds or minutes [19]. Many grid or cloud workloads
are data-intensive [20].
Grids and clouds are accessed via the internet, which

is relatively slow and has unpredictable delays. They were
originally built for providing very high computing power
for scientific or popular applications with no stringent
real-time constraints. Rather than ensuring real-time allo-
cation and execution, grid or cloud RAs therefore follow
other objectives. Doulamis et al. [21], for example, dis-
cuss the fair sharing of CPU rates and allocate resources
to users as a function of resource availabilities, user
demands, and socio-economic values. Lui et al. [22] focus
on the joint resource allocation of computing and network
resources in federated computing and network systems.
They present various resource allocation schemes that can
provide performance and reliability guarantees for mod-
ern distributed computing applications. Entezari-Maleki
andMovaghar [23] develop a probabilistic task scheduling
method for minimizing the mean response time of grid
jobs.
The SDR cloud concept has been recently introduced

[4] and merges three fundamental technologies: central-
ized baseband processing, automatic computing resource
allocation and virtualization. Related study addresses

centralized baseband processing [24,25] and offline, that
is, design-time resource allocation [26].We focus on auto-
matic computing resource allocation, enabling runtime
resource management and seamless real-time execution.
Each wireless communications service request needs to
be served in real time, providing sufficient computing
resources for the continuous real-time data processing.
Two general approaches exist for scheduling real-time
tasks on multiprocessor platforms. Tasks can be statically
assigned prior to execution ormigrate between processors
during execution. The former can be achieved through
partitioned scheduling, where an application is parti-
tioned among the processing elements (mapping) before
being locally scheduled. The latter approach is typically
associated with global or dynamic scheduling. The con-
tention for the global scheduling queue and non-negligible
migration overheads among processing elements can
result in significant scheduling overheads in practice [10].
Themigration cost limits the number of cores that a global
scheduler canmanage [10,11]. Non-preemptive static par-
titioned scheduling, on the other hand, is pertinent to high
performance many-core and multiprocessor platforms. It
facilitates implementation and introduces low run-time
resource overheads [27].
A constant execution period and practically determinis-

tic and regular execution patterns characterize SDR appli-
cations. The real-time constraints of the DSP processing
chains can then be given as minimum throughput and
maximum latency constraints and static schedulers can
be employed [8]. The mapping and scheduling can thus
be calculated only once for each waveform as part of the
session establishment process. The SDR cloud resource
management performance is then limited by the RA’s exe-
cution time per invocation (user session request) and the
session arrival rate. The derivation of this limit is the
objective of this article.

3 Problem formulation
Wireless subscribers access communications services any-
where, anytime, and under different circumstances. Mea-
surements have shown that the average user establishes
seven or eight voice sessions per day of 90 s in the mean
[28]. Data users realize a larger number of shorter ses-
sions. The number of concurrent sessions in a large city
may range between 10,000 and 120,000 as a function of
place and time.
The SDR cloud RA needs to be able to handle the spatial

and temporal variety in the traffic load. A single data cen-
ter ideally executes all waveforms and centrally manages
all session requests. The corresponding RA then needs to
be able to dispatch thousands of requests per second.
Modern wireless communications standards, however,

impose restrictions on the maximum session establish-
ment time tmax

s . The call setup delay ts is the transition
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time from a dormant (camping or idle [1]) state to the
transmission or reception state. Each session establish-
ment here consists of allocating sufficient computing
resources to the corresponding transceiver waveform. The
shorter the call setup time the better the always con-
nected illusion. LTE-A therefore establishes 10 ms as
the target call setup delay. Wireless operators moreover
define a maximum blocking probability target pmax

b , which
should be satisfied in the mean. The blocking probabil-
ity pb denotes the probability of a user session request
being rejected due to insufficient computing resources.
Wireless communications systems need to be accordingly
dimensioned.
The session establishment time and blocking con-

straints determine the RA capacity in terms ofmanageable
users. The number of users that can be concurrently
served is directly proportional to the available processing
resources. More processors ensure a lower pb, whereas
fewer processors a shorter ts. The objective of this arti-
cle is analyzing the relation between the RA capacity and
the call setup time and blocking probability. We identify
fundamental SDR cloud management limits and indicate
possible SDR cloud data center design and management
solutions. Table 1 summarizes the parameters that are
used throughout the paper.

4 RA complexity model
The algorithmic complexity of any RA is a function of
the number of tasks m and the number of processing

Table 1 Description of parameters

Parameter Description

n Number of nodes or processors

m Number of waveform modules or tasks

ts Call setup delay

tmax
s Call setup delay constraint

pb Blocking probability

pmax
b Blocking probability constraint

tRA Resource allocator’s (RA’s) execution time model

F Scaling factor of RA model

α Nodes’ exponent (nα ) of RA model

β Modules’ exponent (mβ ) of RA model

θ Cost function’s weight

ρ Traffic load in Erlangs

ρmax Maximum traffic load a single RA can manage

λ Average session initiation requests per second

1/μ Average session duration in seconds

�(n) Number of users that can be served with n

processors for a given waveform model

cores or nodes n. A polynomial expression can be used for
modeling the complexity of practical RAs, such as

tRA(n,m) = Fnαmβ . (1)

Parameters α and β specify the complexity order of a
RA. The same expression also serves as a general execu-
tion time model of an RA implementation. Parameters F ,
α, and β can be found by measuring the RA execution
time for different n and m and then performing model
fitting. Although other models may be more accurate for
certain RA algorithms, (1) is simple and general.
Without loss of generality, we suggest a simple and well-

known algorithm for providing numerical examples for
the analysis performed in this article. The g- or greedy-
mapping [8] is a baseline mapping algorithm. It maps one
process after another, choosing the processor that leads
to the minimum mapping cost. Cost metrics are there-
fore computed based on a suitable cost function. The cost
function we suggest manages the limited processing and
interprocessor bandwidth resources and, accordingly, dis-
tributing the processing load while minimizing the data
flows between processors [8].
The algorithm is implemented in C and available as

open source code [29]. Measuring the execution time of
our implementation as a function of n and m and per-
forming non-linear least-squares model fitting leads to
F = 3.98 · 10−9, α = 2.94 and β = 1.04. We can thus
approximate the execution time model of the g-mapping
algorithms as

tRA(n,m) ≈ 4mn3[ ns] . (2)

The g-mapping execution time thus increases linearly
with the number of waveform modules m and with
the number of processors n cubed. Figure 2 plots the
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Figure 2 Execution timemodel.Measured and modeled execution
times of the g-mapping RA.
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execution time measurements together with the least-
squares model.

5 Resource provisioning
Throughout this section, we will use the previously
derived execution time model (2). The analysis is also
valid for other RA complexity models provided that the
complexity increases with the number of processors.

5.1 Optimization problem
We analyze the relation between the call setup delay,
the blocking probability, and the RA capacity. To this
aim, we derive the optimal number of resources for pro-
cessing user signals as a function of the environmental
conditions and constraints. The wireless communications
traffic model is a stochastic birth-death process. The
time between consecutive session establishments follows
a Poisson distribution with a mean of 1/λ. That is, λ

corresponds to the average number of new user ses-
sion requests per second. The session duration follows an
exponential distribution, where 1/μ corresponds to the
average session duration in seconds. The traffic load is
then ρ = λ/μ Erlangs.
We assume that a single RA needs to handle ρ Erlangs

of traffic. The objective is then determining the optimal
number of processors n that satisfies the system con-
straints tmax

s and pmax
b . This value is obtained as the solu-

tion to an optimization problemmaximizing the following
objective function:

f (n) = (1 − θ)U(n) − θ
n
ρ
, ρ > 0, (3)

U(n) is the average number of users that can be served
with n processors. Function f (n) weights off the benefit
(average number of served users) and the cost (allocated
resource per Erlang). Parameter θ weights the impor-
tance of one term with respect to the other. Equation
(3) allows minimizing the number of allocated resources
n (θ = 1) or maximizing the average number of served
users U(n) (θ = 0). Applying Little’s law, we can express
U(n) as

U(n) = (1 − pb(n)) ρ. (4)

The optimization problem can then be formulated as
follows:

max
n

f (n)

s.t pb(n) ≤ pmax
b

ts(n) ≤ tmax
s

n ∈ N.

(5)

Before solving this problem, we first need to model
the call setup delay ts(n) and blocking probability pb(n)

constraints.

5.2 Constraints
The session establishment process can be modeled as
a double-queuing process: New users enter an infinite
queue whose service time is the execution time of the RA,
that is, tRA(n,m). They leave this allocation queue and
enter a second multi-server queue of size c. The service
time of the active sessions queue is exponentially dis-
tributed with an average of 1/μ, which corresponds to the
average session duration.
This model can be represented by a two-dimensional

state transition diagram, where state probability pi,j indi-
cates the probability that there are i users waiting for the
allocation queue while j users have active sessions. The
model can be simplified if we consider that the mapping
time is much shorter than the average session duration,
that is, tRA(n,m) � 1/μ. This allows separating the
two queues. Following Kendall’s representation, we model
the allocation queue as an infinite length M/D/1 queue
and the active sessions queue as a blocking and finite-
size M/M/c/c queue with no wait sates. For simplifying
the mathematical analysis, here we consider waveforms of
m = 10 tasks and analyze tRA as a function of n.

5.2.1 Call setup delay
User session requests are random and independent from
one another. The random session requests lead to ran-
dom session establishment times. The call setup delay
constraint (5) will thus be satisfied on average despite the
deterministic mapping time tRA(n). Applying the Poisson
arrivals see time averages (PASTA [30]) property, we know
that ts(n) follows a Poisson distribution. According to the
M/D/1 model, the average call setup delay then becomes

ts(n) =
{

2−λtRA(n)
2(1−λtRA(n))/tRA(n)

if λtRA(n) ≤ 1
∞ if λtRA(n) > 1.

(6)

This function ismonotonically increasingwithn (Figure 3)
for λtRA(n) ≤ 1. The system becomes unstable and the
average waiting time infinite beyond that point. Figure 3
shows that the call setup delay limits the maximum num-
ber of processors that can be managed. For ts(n) = 100
ms and λ = 10 user arrivals per second, for example, up
to 150 processors can be managed with the g-mapping
RA, but less than 100 processors for λ = 100. Figure 3,
moreover, shows that a low ts(n) significantly limits the
RA capacity.

5.2.2 Blocking probability
The blocking probability of the active sessions queue
(M/M/c/c queue) is the probability that c users are
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Figure 3 Average waiting time. Average waiting time ts(n) as a
function of n and λ for tRA(n,m = 10).

occupying all available resources. When this happens, a
new user is rejected due to insufficient computing capac-
ity. Parameter c therefore represents the maximum num-
ber of waveforms that can be loaded to n processors.
This number is difficult to characterize since depend-
ing on many factors, including the computing capacity
of each processor, the interprocessor communication net-
work, the waveforms’ computing characteristics, and the
performance of the RA algorithm.
For an analytical treatment the capacity of the queue

needs to be abstracted. We propose defining c = �(n),
which defines the maximum number of users that n pro-
cessors can accept. Without loss of generality, we assume
the linearmodel�(n) = n/k. Parameter k is a real positive
value and indicates the percentage of a single processor
that is needed for executing a waveform. For k > 1, more
than one processor is required for processing a single-
user digital transceiver. For k = 1.8, for instance, one
waveform requires 180% of the processing resources of a
single processor for real-time execution. Note that U(n),
which provides the average number of users that can be
loaded to n processors, depends on the traffic load and
blocking probability, whereas �(n) essentially depends
on the processor capacity, waveform characteristics, and
RA algorithm efficiency. The blocking probability of the
M/M/c/c queue with c = �(n) is then

pb(ρ,�(n)) = B(ρ,�(n)), (7)

where B(ρ, c) is the Erlang-B function [30] for ρ Erlangs
and c servers. Figure 4 indicates the evolution of the
blocking probability as a function of n for different k.

5.3 Solution
The objective function (3) is strictly concave because
the blocking probability (7) is strictly convex [31]. This
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Figure 4 Blocking probability. Blocking probability pb(ρ , n/k) as a
function of n for different k.

ensures that the optimization problem has a unique solu-
tion. Figure 5 plots the objective function f (n) for different
weights θ .
The solution is trivial for θ = 0 or θ = 1, because

the objective functions and the constraints are monotonic
with n over the entire range of processors. More precisely,
pb(n) decreases and ts(n) increases with n. We therefore
define nmin as the minimum number of processors that
satisfies the blocking probability constraint pmax

b and nmax
as the maximum number of processors that meets the call
setup delay limit tmax

s . That is, nmin and nmax limit the
number of processors to a range that provides the desired
quality. They satisfy

pb(nmin) ≤ pmax
b , pb(nmin − 1) > pmax

b (8)
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Figure 5 Objective function. Objective function f (n) for ρ = 50 for
different θ .
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and

ts(nmax) ≤ tmax
s , ts(nmax + 1) > tmax

s . (9)

We can say that n = nmin processors minimize the num-
ber of resources, whereas n = nmax processors minimize
the blocking probability, or maximize the average number
of concurrently served users, while still satisfying the call
setup delay constraint. If, zhowever, nmin exceeds nmax,
the two constraints cannot both be satisfied and the prob-
lem becomes unsolvable. The solutions that minimize the
blocking probability (θ = 0) and the allocated processors
(θ = 1) then become

n∗
θ=0 = {nmax | nmin ≤ nmax} (10)

n∗
θ=1 = {nmin | nmin ≤ nmax} . (11)

We need to solve the problem numerically for arbi-
trary θ . The first option is using numerical optimization.
Integer optimization problems are very complex to solve,
though. We therefore relax the integer nature of the opti-
mization variable n and use a convex solver for finding a
non-integer solution.We then evaluate the objective func-
tion for the two closest integers, choosing the maximum
that satisfies the constraints.
The Erlang’s B(ρ, c) function is defined for natural c. The

Erlang’s extended B-formula is a continuous representa-
tion of the Erlang-B function based on the incomplete
Gamma function. Computing this function numerically
however requires numerical integration. We rather pro-
pose using the recursive method

B(ρ, i) = ρB(ρ, i − 1)
ρB(ρ, i − 1) − 1

, (12)

where i is a real positive number. If we are able to obtain
B(ρ, z) for a real number z < 1, then we can com-
pute B(ρ, i) for any i. Various approximations for B(ρ, z)
have been published based on parabolic interpolations.
We used the expression of [32] for the numerical examples
that follow.

5.4 Numerical examples
More than one processor is typically needed for execut-
ing a modern waveform consisting of 10 or more tasks [8].
The numerical examples therefore consider �(n) = n/2
allocatable users, m = 10 waveform tasks, and 1/μ = 40
s average data session duration. We use the interior-point
numerical algorithm for solving problem (5) and obtaining
a non-integer solution (Figure 6).
Assigning n∗ processors to the RA maximizes the sys-

tem efficiency f (n). The optimal number of processors n∗
is a function of θ . The curve corresponding to θ = 0

represents the solution that minimizes the blocking prob-
ability (n∗ = nmax) while meeting the call setup delay
constraint. The curve corresponding to θ = 1, at the
other extreme, indicates the solution that minimize the
use of processing resources (n∗ = nmin) while satisfy-
ing the blocking probability constraint. The intersection
of the two curves provides the maximum system capacity
ρmax. Parameter nmin becomes larger than nmax beyond
that point and the problem has no solution.
The system capacity is almost 50 Erlangs for a call setup

delay constraint of 50ms, which corresponds to the LTE
standard specification (Figure 6a,b). LTE-A indicates call
setup times of 10 ms, reducing the RA capacity to some
25 Erlangs in this case (Figure 6c,d). The capacity can be
improved by using more powerful processors. Assuming
�(n) = n/1.5, for example, leads to ρmax = 35 Erlangs for
the LTE-A case (Figure 6e,f ).

6 RA capacity
The previous section has indicated that the RA capacity
ρmax is finite. Here we analytically derive this limit. The
manageable number of processors is obtained from the
tolerable execution time. The blocking probability then
determines the RA capacity.

6.1 RA execution time limit
The tolerable RA execution time tmax

RA is a function of the
call setup delay constraint and the user arrival rate. It is
obtained assuming that the average call setup delay (6) is
equal to the call setup delay constraint tmax

s :

tmax
RA = λ−1 + tmax

s −
√

λ−2 + (tmax
s )2 (13)

Equation (13) can be simplified when tmax
s is either

considerably smaller or considerably larger than the user
inter-arrival time:

tmax
RA ≈

{
λ−1 if tmax

s � λ−1

tmax
s if tmax

s � λ−1. (14)

When tmax
s � λ−1, the capacity is limited by the stabil-

ity of the M/D/1 mapping queue (see (6)). The call setup
delay is then dominated by the time the user needs to wait
before being be served rather than the RA execution time
itself. On the other hand, when tmax

s � λ−1 the capacity is
limited by the call setup delay constraint. This is the case
with modern communications standards, such as LTE and
LTE-A, where the call setup delay is dominated by the RA
execution time.
The general expression of tmax

RA is a function of λ (13).
Therefore, nmax is also a function of λ.
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Figure 6 Optimal processor allocation. Optimal number of processors (a, c, e) and corresponding blocking probability (b, d, f) for different tmax
s

and k.

6.2 Processor limit
The maximum number of processors that a RA can man-
age is a function of tmax

RA and follows from inverting
Equation (1):

nmax =
⎢⎢⎢⎣ α

√
tmax
RA
Fmβ

⎥⎥⎥⎦ . (15)

The expression 	·
 indicates rounding off to the closest
integer value.

6.3 Traffic limit
Considering the blocking probability constraint, the max-
imum traffic load ρmax that the RA can manage is then the
solution to

B (ρmax, c) = pmax
b

� [nmax(ρmaxμ)] = c.
(16)

The capacity in Erlangs is thus a function of the average
user session duration μ. The expression can be simplified
when tmax

s � λ−1. The maximum number of processors
nmax then depends only on the maximum call setup delay
constraint and the capacity becomes independent of μ.
The maximum traffic load ρmax that the RA can manage is
then the solution to

B (ρmax,�(nmax)) = pmax
b , when tmax

s � λ−1. (17)

Figure 7 plots the capacity of the g-mapping RA, assum-
ing that k = 1.5 and k = 2 processors, are needed for
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Figure 7 Resource allocator capacity. Capacity of the g-mapping
RA as a function of tmax

s and k.

digitally processing the signals of a single user. The figure
assumes the approximation tmax

s � λ−1 and, thus, is the
solution to (17). It shows that a single RA can handle up
to 200 Erlangs, assuming legacy cellular communications
standards, which are characterized by loose call setup
delay constraints. However, the capacity drops way below
80 Erlangs for the emerging LTE and LTE-A standards,
which establish maximum session establishment delays of
50 and 10ms.

7 Distributed resourcemanagement
SDR clouds will provide wireless communications services
to very wide service areas and will, consequently, need to
manage huge traffic loads. Incoming user session requests
will then need to be assigned to different RAs. Each RA
will absorb only a portion of the total traffic demand,
managing part of the data center resources. The assign-
ment of processors to RAs should adapt to the traffic load
distribution while satisfying the constraints of (5).
Here we assume a reduced SDR cloud model, where a

data center of N = 100 processors serves two radio cells
with a total traffic load of 40 Erlangs. The maximum call
setup delay is 10ms and the target blocking probability 5%.
The capacity limit of a single RA is 35 Erlangs for �(n) =
n/1.5. We thus need at least two RAs, one per radio cell.
The problem then consists of splitting the N processors
between the two RAs in such a way that all constraints are
satisfied. Problem (5) thus extends to

max{n1,n2}
f (n1) + f (n2)

s.t pb(ni) ≤ pmax
b , i = 1, 2

ts(ni) ≤ tmax
s , i = 1, 2

n1 + n2 ≤ N
n1, n2 ∈ N

(18)

Parameters n1 and n2 represent the number of proces-
sors allocated to RA1 and RA2. Figure 8 shows the optimal
solution for RA1. The plot of n∗

2 is symmetrical to β = 0.5.
The traffic of each cell is ρ1 = ερ and ρ2 = (1 − ε) ρ,
where ρ = 40 Erlangs and 0 ≤ ε ≤ 1.
For θ = 0 all processors will be employed for max-

imizing the sum of U(n) (see (3)). The processors are
distributed between the RAs depending on the slope of
the Erlang-B function. For 0.1 ≤ ε ≤ 0.3 and 0.7 ≤
ε ≤ 0.9 more processors are assigned to the cell with
higher traffic load. This is different for 0.3 ≤ ε ≤ 0.7,
because assigning more processors to the cell with lower
service demand decreases the overall blocking probability.
For ε ≤ 0.1 or ε ≥ 0.9, the traffic of one or the other cell
exceeds the corresponding RA capacity and the problem
becomes unfeasible. The deployment of additional RA are
necessary for such traffic distributions.
When θ = 1, the number of processors is directly

proportional to the traffic load, because the slope of the
objective function is constant with n. For 0 < θ < 1,
the resources are allocated as a function of the perfor-
mance increment in relation to the amount of allocated
resources. The number of allocated processors linearly
increases with ε and (1 − ε), respectively, until reaching
the maximum number of processors nmax that still meets
the session establishment delay constraint.

8 Simulation results
We simulate a non-homogeneous traffic demand, where
the user session initiation and termination is modeled as
a Poisson arrival and departure process. The user arrival
rate is 4 times the departure rate, simulating an unstable
situation for better analyzing the performance of the
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Figure 8 Optimal processor distribution for two RA. Optimal
distribution of processors to two g-mapping RAs as a function of ε for
different θ (tmax

s = 10 ms pmax
b = 5%, and �(n) = n/1.5).
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over simulation time for 256 processors, 16 RAs and a heterogeneous
traffic distribution.

different strategies. The adaptive strategy solves Equation
(18) with 16 RAs instead of 2. The static strategy does not
track the traffic load distribution, but rather assigns 16
of the 256 processors to each RA. The second variant of
the static strategy randomly distributes the 256 processes
among the RAs.
Each processor has a capacity of 12 giga-operations per

second (GOPS). The waveforms offer 64, 128, 384, and
1024 kbps data rate services, which are solicited with a
probability of 0.5, 0.2, 0.2, and 0.1, respectively. The four
waveform models are those from [4], requiring between
50% and 75% of a processor’s capacity (k < 1). The users
follow a two-dimensional Gaussian distribution, centered
and with a variance of 0.25 relative to the service area.
The blocking probability constraint is dropped in order

to enable a fair evaluation between the three strate-
gies. The optimal strategy then maximizes the number of
served users (θ = 0). The session initialization constraint
is 50ms and the average session duration 40 s.
Figure 9 shows the accumulated number of accepted

user session requests over time. The adaptive strategy
assigns processors to RAs according to the traffic demand
and optimization parameters, resulting in 2–33 proces-
sors assigned to each RA. It accepts considerably more
users than both variants of the static strategy. This indi-
cates the performance improvement of adapting the pro-
cessor assignment to the actual user distribution.

9 Conclusions
SDR clouds provide an alternative concept for designing
and managing wireless communications infrastructure.
Higher resource efficiencies are achievable by merging
the digital signal processing resources of today’s base sta-
tions into data centers and employing cloud computing
technology. The limited resources need to be properly

managed, though. This article has addressed the SDR
cloud computing resource management problem. Defin-
ing the concept of a RA that manages a subset of comput-
ing resources facilitates separating the signal processing
algorithms design from the infrastructure and enables
using resources on a pay-per-use basis.
Based on the call setup delay and the blocking prob-

ability constraints, we have defined the RA processor
allocation problem as a constrained convex optimization
problem. The feasibility region provides the maximum
traffic capacity that a single RA can manage. The results
have shown that modern cellular communications stan-
dards, such as LTE and LTE-Advanced, considerably limit
the RA capacity. Assuming that two processors or more
are required to process a transceiver processing chain
in real time, less than 50 Erlangs of traffic can be han-
dled by a single RA employing a greedy mapping algo-
rithm. A distributed resource management is therefore
necessary.
The data center processors need to be distributed

among several RAs subject to the call setup delay and
blocking probability constraints. The simulation results
moreover indicate that the number of accepted users is
severely degraded if the processors distribution is not
adapted to the traffic distribution. Our solution is optimal,
but does not scale well with the problem size. More pre-
cisely, the complexity of problem (18) grows exponentially
with the number of RAs. Future research will therefore
develop sub-optimal solutions for dynamically recalculat-
ing the assignment of processors to RAs and so adapt to
varying traffic loads in very large-scale computing sys-
tems. Different traffic patterns and empirical data sets will
also be considered.
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