495 research outputs found

    A New Measurement of Kaonic Hydrogen X rays

    Full text link
    The KˉN\bar{K}N system at threshold is a sensitive testing ground for low energy QCD, especially for the explicit chiral symmetry breaking. Therefore, we have measured the KK-series x rays of kaonic hydrogen atoms at the DAΦ\PhiNE electron-positron collider of Laboratori Nazionali di Frascati, and have determined the most precise values of the strong-interaction energy-level shift and width of the 1s1s atomic state. As x-ray detectors, we used large-area silicon drift detectors having excellent energy and timing resolution, which were developed especially for the SIDDHARTA experiment. The shift and width were determined to be ϵ1s=283±36±6(syst)\epsilon_{1s} = -283 \pm 36 \pm 6 {(syst)} eV and Γ1s=541±89(stat)±22(syst)\Gamma_{1s} = 541 \pm 89 {(stat)} \pm 22 {(syst)} eV, respectively. The new values will provide vital constraints on the theoretical description of the low-energy KˉN\bar{K}N interaction.Comment: 5 figures, submitted to Physics Letters

    Shedding New Light on Kaon-Nucleon/Nuclei Interaction and Its Astrophysical Implications with the AMADEUS Experiment at DAFNE

    Get PDF
    The AMADEUS experiment deals with the investigation of the low-energy kaon-nuclei hadronic interaction at the DA{\Phi}NE collider at LNF-INFN, which is fundamental to respond longstanding questions in the non-perturbative QCD strangeness sector. The antikaon-nucleon potential is investigated searching for signals from possible bound kaonic clusters, which would open the possibility for the formation of cold dense baryonic matter. The confirmation of this scenario may imply a fundamental role of strangeness in astrophysics. AMADEUS step 0 consisted in the reanalysis of 2004/2005 KLOE dataset, exploiting K- absorptions in H, 4He, 9Be and 12C in the setup materials. In this paper, together with a review on the multi-nucleon K- absorption and the particle identification procedure, the first results on the {\Sigma}0-p channel will be presented including a statistical analysis on the possible accomodation of a deeply bound stateComment: 6 pages, 2 figure, 1 table, HADRON 2015 conferenc

    First measurement of kaonic helium-3 X-rays

    Get PDF
    The first observation of the kaonic 3He 3d - 2p transition was made using slow K- mesons stopped in a gaseous 3He target. The kaonic atom X-rays were detected with large-area silicon drift detectors using the timing information of the K+K- pairs of phi-meson decays produced by the DAFNE e+e- collider. The strong interaction shift of the kaonic 3He 2p state was determined to be -2+-2 (stat)+-4 (syst) eV.Comment: Accepted for publication in Phys. Lett.

    Preliminary study of kaonic deuterium X-rays by the SIDDHARTA experiment at DAFNE

    Full text link
    The study of the KbarN system at very low energies plays a key role for the understanding of the strong interaction between hadrons in the strangeness sector. At the DAFNE electron-positron collider of Laboratori Nazionali di Frascati we studied kaonic atoms with Z=1 and Z=2, taking advantage of the low-energy charged kaons from Phi-mesons decaying nearly at rest. The SIDDHARTA experiment used X-ray spectroscopy of the kaonic atoms to determine the transition yields and the strong interaction induced shift and width of the lowest experimentally accessible level (1s for H and D and 2p for He). Shift and width are connected to the real and imaginary part of the scattering length. To disentangle the isospin dependent scattering lengths of the antikaon-nucleon interaction, measurements of Kp and of Kd are needed. We report here on an exploratory deuterium measurement, from which a limit for the yield of the K-series transitions was derived: Y(K_tot)<0.0143 and Y(K_alpha)<0.0039 (CL 90%). Also, the upcoming SIDDHARTA-2 kaonic deuterium experiment is introduced.Comment: Accepted by Nuclear Physics

    Unprecedented studies of the low-energy negatively charged kaons interactions in nuclear matter by AMADEUS

    Get PDF
    The AMADEUS experiment aims to provide unique quality data of KK^- hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the Λ(1405)\Lambda(1405) state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon KK^- absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters. AMADEUS takes advantage of the DAΦ\PhiNE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for KK^- nuclear capture on H, 4{}^4He, 9{}^{9}Be and 12{}^{12}C, both at-rest and in-flight. During the second half of 2012 a successful data taking was performed with a dedicated pure carbon target implemented in the central region of KLOE, providing a high statistic sample of pure at-rest KK^- nuclear interactions. For the future dedicated setups involving cryogenic gaseous targets are under preparation.Comment: 14 pages, 6 figure
    corecore