399 research outputs found
Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets
Cataloged from PDF version of article.The removal of phenol (Ph) and 2-chlorophenol (2-CPh) from aqueous solution by native and heat inactivated fungus Funalia trogii pellets were investigated. The effects of contact time, solid/liquid ratio, optimum pH and temperature on the phenols removal capacity by the pellets were established. The removal efficiency of phenols increased significantly with increasing biomass dose. The optimum pH was detected to be 8.0. The second-order equations are described and evaluated on the basis of a comparative estimation of the corresponding coefficients. The phenol removal equilibrium isotherm was modeled by the Langmuir equations. The enthalpy change values were obtained between -7.62 and -10.64 kJ/mol. This indicated that the uptake of phenols either on native or heat inactivated fungal pellets was based on a physical adsorption process. © 2008 Elsevier Ltd. All rights reserved
Detecting and Classifying Nuclei on a Budget
The benefits of deep neural networks can be hard to realise in medical imaging tasks because training sample sizes are often modest. Pre-training on large data sets and subsequent transfer learning to specific tasks with limited labelled training data has proved a successful strategy in other domains. Here, we implement and test this idea for detecting and classifying nuclei in histology, important tasks that enable quantifiable characterisation of prostate cancer. We pre-train a convolutional neural network for nucleus detection on a large colon histology dataset, and examine the effects of fine-tuning this network with different amounts of prostate histology data. Results show promise for clinical translation. However, we find that transfer learning is not always a viable option when training deep neural networks for nucleus classification. As such, we also demonstrate that semi-supervised ladder networks are a suitable alternative for learning a nucleus classifier with limited data
Poly (hydroxyethyl methacrylate-glycidyl methacrylate) films modified with different functional groups: In vitro interactions with platelets and rat stem cells
Cataloged from PDF version of article.Copolymerization of 2-hydroxyethylmethactylate (HEMA) with glycidylmethacrylate (GMA) in the presence of alpha-alpha'-azoisobisbutyronitrile (AIBN) resulted in the formation of hydrogel films carrying reactive epoxy groups. Thirteen kinds of different molecules with pendant -NH2 group were used for modifications of the p(HEMA-GMA) films. The -NH2 group served as anchor binding site for immobilization of functional groups on the hydrogel film via direct epoxy ring opening reaction. The modified hydrogel films were characterized by FTIR, and contact angle studies. In addition, mechanical properties of the hydrogel films were studied, and modified hydrogel films showed improved mechanical properties compared with the non-modified film, but they are less elastic than the non-modified film. The biological activities of these films such as platelet adhesion, red blood cells hemolysis, and swelling behavior were studied. The effect of modified hydrogel films, including -NH2, (using different aliphatic -CH2 chain lengths) -CH3, -SO3H, aromatic groups with substituted -OH and -COOH groups, and amino acids were also investigated on the adhesion, morphology and survival of rat mesenchymal stem cells (MSCs). The MTT colorimetric assay reveals that the p(HEMA-GMA)-GA-AB, p(HEMA-GMA)-GA-Phe, p(HEMA-GMA)-GA-Trp, p(HEMA-GMA)-GA-Glu formulations have an excellent biocompatibility to promote the cell adhesion and growth. We anticipate that the fabricated p(HEMA-GMA) based hydrogel films with controllable surface chemistry and good stable swelling ratio may find extensive applications in future development of tissue engineering scaffold materials, and in various biotechnological areas. (c) 2012 Elsevier B.V. All rights reserved
Immobilization of laccase on itaconic acid grafted and Cu(II) ion chelated chitosan membrane for bioremediation of hazardous materials
Background: Chitosan membranes were formed through a phase inversion technique and then cross-linked with epichlorohydrin (CHX). Heterogeneous graft copolymerization of itaconic acid (IA) onto membrane was carried out with different monomer concentrations (CHX-g-p(IA)). The membrane properties such as equilibrium swelling ratio, porosity, and contact angle were measured, together with analysis by scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy. Results: The Cu(II) ion incorporated membranes (i.e. CHX-g-p(IA)-Cu(II)) were used for reversible immobilization of laccase using CHX-g-p(IA) membrane as a control system. Maximum laccase adsorption capacities of the CHX-g-p(IA) and CHX-g-p(IA)-Cu(II) membranes (with 9.7% grafting yield) were found to be 6.3 and 17.6 mg mL -1 membrane at pH 4.0 and 6.0, respectively. The K m value for immobilized laccase on CHX-g-p(IA)-Cu(II) (4.16 × 10 -2 mmol L -1) was 2.11-fold higher than that of free enzyme (1.97 × 10 -2 mmol L -1). Finally, the immobilized laccase was used in a batch system for degradation of three different dyes (Reactive Black 5, RB5; Cibacron Blue F3GA, CB; and Methyl Orange, MO). The immobilized laccase on CHX-g-p(IA)-Cu(II) membrane was more effective for removal of MO dye than removal of CB and RB5 dyes. CONCLUSION: Flexibility of the enzyme immobilized grafted polymer chains is expected to provide easy reaction conditions without diffusion limitation for substrate dye molecules and their products. The support described, prepared from green chemicals, can be used for the immobilization of industrially important enzymes. © 2012 Society of Chemical Industry
Examination of fabrication conditions of acrylate-based hydrogel formulations for doxorubicin release and efficacy test for hepatocellular carcinoma cell
The objective of the present study was to develop 2-hydroxypropyl methacrylate-co-polyethylene methacrylate [p(HPMA-co-PEG-MEMA)] hydrogels that are able to efficiently entrap doxorubicin for the application of loco-regional control of the cancer disease. Systemic chemotherapy provides low clinical benefit while localized chemotherapy might provide a therapeutic advantage. In this study, effects of hydrogel properties such as PEG chains length, cross-linking density, biocompatibility, drug loading efficiency, and drug release kinetics were evaluated in vitro for targeted and controlled drug delivery. In addition, the characterization of the hydrogel formulations was conducted with swelling experiments, permeability tests, Fourier transform infrared, SEM, and contact angle studies. In these drug-hydrogel systems, doxorubicin contains amine group that can be expected a strong Lewis acid-base interaction between drug and polar groups of PEG chains, thus the drug was released in a timely fashion with an electrostatic interaction mechanism. It was observed that doxorubicin release from the hydrogel formulations decreased when the density of cross-linking, and drug/polymer ratio were increased while an increase in the PEG chains length of the macro-monomer (i.e. PEG-MEMA) in the hydrogel system was associated with an increase in water content and doxorubicin release. The biocompatibility of the hydrogel formulations has been investigated using two measures: cytotoxicity test (using lactate dehydrogenase assay) and major serum proteins adsorption studies. Antitumor activity of the released doxorubicin was assessed using a human SNU398 human hepatocellular carcinoma cell line. It was observed that doxorubicin released from all of our hydrogel formulations which remained biologically active and had the capability to kill the tested cancer cells. © 2014 Taylor and Francis
Poly (hydroxyethyl methacrylate-glycidyl methacrylate) films modified with different functional groups: In vitro interactions with platelets and rat stem cells
Copolymerization of 2-hydroxyethylmethacrylate (HEMA) with glycidylmethacrylate (GMA) in the presence of α-α′- azoisobisbutyronitrile (AIBN) resulted in the formation of hydrogel films carrying reactive epoxy groups. Thirteen kinds of different molecules with pendant NH2 group were used for modifications of the p(HEMA-GMA) films. The NH2 group served as anchor binding site for immobilization of functional groups on the hydrogel film via direct epoxy ring opening reaction. The modified hydrogel films were characterized by FTIR, and contact angle studies. In addition, mechanical properties of the hydrogel films were studied, and modified hydrogel films showed improved mechanical properties compared with the non-modified film, but they are less elastic than the non-modified film. The biological activities of these films such as platelet adhesion, red blood cells hemolysis, and swelling behavior were studied. The effect of modified hydrogel films, including NH2, (using different aliphatic CH2 chain lengths) CH3, SO3H, aromatic groups with substituted OH and COOH groups, and amino acids were also investigated on the adhesion, morphology and survival of rat mesenchymal stem cells (MSCs). The MTT colorimetric assay reveals that the p(HEMA-GMA)-GA-AB, p(HEMA-GMA)-GA-Phe, p(HEMA-GMA)-GA-Trp, p(HEMA-GMA)-GA-Glu formulations have an excellent biocompatibility to promote the cell adhesion and growth. We anticipate that the fabricated p(HEMA-GMA) based hydrogel films with controllable surface chemistry and good stable swelling ratio may find extensive applications in future development of tissue engineering scaffold materials, and in various biotechnological areas. © 2012 Elsevier B.V
In situ functionalization of a cellulosic-based activated carbon with magnetic iron oxides for the removal of carbamazepine from wastewater
The main goal of this work was to produce an easily recoverable waste-based magnetic activated carbon (MAC) for an efficient removal of the antiepileptic pharmaceutical carbamazepine (CBZ) from wastewater. For this purpose, the synthesis procedure was optimized and a material (MAC4) providing immediate recuperation from solution, remarkable adsorptive performance and relevant properties (specific surface area of 551 m2 g-1 and saturation magnetization of 39.84 emu g-1) was selected for further CBZ kinetic and equilibrium adsorption studies. MAC4 presented fast CBZ adsorption rates and short equilibrium times (< 30-45 min) in both ultrapure water and wastewater. Equilibrium studies showed that MAC4 attained maximum adsorption capacities (qm) of 68 ± 4 mg g-1 in ultrapure water and 60 ± 3 mg g-1 in wastewater, suggesting no significant interference of the aqueous matrix in the adsorption process. Overall, this work provides evidence of potential application of a waste-based MAC in the tertiary treatment of wastewaters.publishe
- …