17 research outputs found

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers

    A Map of Dielectric Heterogeneity in a Membrane Protein: the Hetero-Oligomeric Cytochrome b 6 f Complex

    Get PDF
    The cytochrome b6f complex, a member of the cytochrome bc family that mediates energy transduction in photosynthetic and respiratory membranes, is a hetero-oligomeric complex that utilizes two pairs of b-hemes in a symmetric dimer to accomplish trans-membrane electron transfer, quinone oxidation–reduction, and generation of a proton electrochemical potential. Analysis of electron storage in this pathway, utilizing simultaneous measurement of heme reduction, and of circular dichroism (CD) spectra, to assay heme–heme interactions, implies a heterogeneous distribution of the dielectric constants that mediate electrostatic interactions between the four hemes in the complex. Crystallographic information was used to determine the identity of the interacting hemes. The Soret band CD signal is dominated by excitonic interaction between the intramonomer b-hemes, bn and bp, on the electrochemically negative and positive sides of the complex. Kinetic data imply that the most probable pathway for transfer of the two electrons needed for quinone oxidation–reduction utilizes this intramonomer heme pair, contradicting the expectation based on heme redox potentials and thermodynamics, that the two higher potential hemes bn on different monomers would be preferentially reduced. Energetically preferred intramonomer electron storage of electrons on the intramonomer b-hemes is found to require heterogeneity of interheme dielectric constants. Relative to the medium separating the two higher potential hemes bn, a relatively large dielectric constant must exist between the intramonomer b-hemes, allowing a smaller electrostatic repulsion between the reduced hemes. Heterogeneity of dielectric constants is an additional structure–function parameter of membrane protein complexes

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF

    Experimental support for the “E pathway hypothesis” of coupled transmembrane e(–) and H(+) transfer in dihemic quinol:fumarate reductase

    No full text
    Reconciliation of apparently contradictory experimental results obtained on the quinol:fumarate reductase, a diheme-containing respiratory membrane protein complex from Wolinella succinogenes, was previously obtained by the proposal of the so-called “E pathway hypothesis.” According to this hypothesis, transmembrane electron transfer via the heme groups is strictly coupled to cotransfer of protons via a transiently established pathway thought to contain the side chain of residue Glu-C180 as the most prominent component. Here we demonstrate that, after replacement of Glu-C180 with Gln or Ile by site-directed mutagenesis, the resulting mutants are unable to grow on fumarate, and the membrane-bound variant enzymes lack quinol oxidation activity. Upon solubilization, however, the purified enzymes display ≈1/10 of the specific quinol oxidation activity of the wild-type enzyme and unchanged quinol Michaelis constants, K(m). The refined x-ray crystal structures at 2.19 Å and 2.76 Å resolution, respectively, rule out major structural changes to account for these experimental observations. Changes in the oxidation–reduction heme midpoint potential allow the conclusion that deprotonation of Glu-C180 in the wild-type enzyme facilitates the reoxidation of the reduced high-potential heme. Comparison of solvent isotope effects indicates that a rate-limiting proton transfer step in the wild-type enzyme is lost in the Glu-C180 → Gln variant. The results provide experimental evidence for the validity of the E pathway hypothesis and for a crucial functional role of Glu-C180

    Zinc Inhibition of Bacterial Cytochrome bc1 Reveals the Role of Cytochrome b E295 in Proton Release at the Qo Site

    No full text
    The cytochrome (cyt) bc1 complex (cyt bc1) plays a major role in the electrogenic extrusion of protons across the membrane responsible for the proton motive force to produce ATP. Proton-coupled electron transfer underlying the catalysis of cyt bc1 is generally accepted, but the molecular basis of coupling and associated proton efflux pathway(s) remains unclear. Herein we studied Zn2+-induced inhibition of Rhodobacter capsulatus cyt bc1 using enzyme kinetics, isothermal titration calorimetry (ITC), and electrochemically induced Fourier transform infrared (FTIR) difference spectroscopy with the purpose of understanding the Zn2+ binding mechanism and its inhibitory effect on cyt bc1 function. Analogous studies were conducted with a mutant of cyt b, E295, a residue previously proposed to bind Zn2+ on the basis of extended X-ray absorption fine-structure spectroscopy. ITC analysis indicated that mutation of E295 to valine, a noncoordinating residue, results in a decrease in Zn2+ binding affinity. The kinetic study showed that wild-type cyt bc1 and its E295V mutant have similar levels of apparent Km values for decylbenzohydroquinone as a substrate (4.9 +/- 0.2 and 3.1 +/- 0.4 μM, respectively), whereas their KI values for Zn2+ are 8.3 and 38.5 μM, respectively. The calorimetry-based KD values for the high-affinity site of cyt bc1 are on the same order of magnitude as the KI values derived from the kinetic analysis. Furthermore, the FTIR signal of protonated acidic residues was perturbed in the presence of Zn2+, whereas the E295V mutant exhibited no significant change in electrochemically induced FTIR difference spectra measured in the presence and absence of Zn2\ufe. Our overall results indicate that the proton-active E295 residue near the Q o site of cyt bc1 can bind directly to Zn2+, resulting in a decrease in the electron transferring activity without changing drastically the redox potentials of the cofactors of the enzyme. We conclude that E295 is involved in proton efflux coupled to electron transfer at the Q o site of cyt bc1
    corecore