1,303 research outputs found

    The baroclinic instability in the context of layered accretion. Self-sustained vortices and their magnetic stability in local compressible unstratified models of protoplanetary disks

    Full text link
    Turbulence and angular momentum transport in accretion disks remains a topic of debate. With the realization that dead zones are robust features of protoplanetary disks, the search for hydrodynamical sources of turbulence continues. A possible source is the baroclinic instability (BI), which has been shown to exist in unmagnetized non-barotropic disks. We present shearing box simulations of baroclinicly unstable, magnetized, 3D disks, in order to assess the interplay between the BI and other instabilities, namely the magneto-rotational instability (MRI) and the magneto-elliptical instability. We find that the vortices generated and sustained by the baroclinic instability in the purely hydrodynamical regime do not survive when magnetic fields are included. The MRI by far supersedes the BI in growth rate and strength at saturation. The resulting turbulence is virtually identical to an MRI-only scenario. We measured the intrinsic vorticity profile of the vortex, finding little radial variation in the vortex core. Nevertheless, the core is disrupted by an MHD instability, which we identify with the magneto-elliptic instability. This instability has nearly the same range of unstable wavelengths as the MRI, but has higher growth rates. In fact, we identify the MRI as a limiting case of the magneto-elliptic instability, when the vortex aspect ratio tends to infinity (pure shear flow). We conclude that vortex excitation and self-sustenance by the baroclinic instability in protoplanetary disks is viable only in low ionization, i.e., the dead zone. Our results are thus in accordance with the layered accretion paradigm. A baroclinicly unstable dead zone should be characterized by the presence of large-scale vortices whose cores are elliptically unstable, yet sustained by the baroclinic feedback. As magnetic fields destroy the vortices and the MRI outweighs the BI, the active layers are unmodified.Comment: 19+3 pages, 20+1 figures. Accepted by A&A, final versio

    The Wicked Machinery of Government: Malta and the Problems of Continuity under the New Model Administration

    Get PDF
    This is a study focused on the early years of British rule in Malta (1800-1813). It explores the application to the island of the “new model” of colonial government, one based on direct rule from London mediated by the continuation of existing laws and institutions. Systemic deficiencies are identified. These tended to undermine the effectiveness of direct British rule. This study also reveals, in the context of legal and constitutional continuity, unresolved tensions between modernity and tradition. The political stability of the island was damaged and the possibility of continued British possession was threatened

    Basal bodies bend in response to ciliary forces

    Get PDF
    Motile cilia beat with an asymmetric waveform consisting of a power stroke that generates a propulsive force and a recovery stroke that returns the cilium back to the start. Cilia are anchored to the cell cortex by basal bodies (BBs) that are directly coupled to the ciliary doublet microtubules (MTs). We find that, consistent with ciliary forces imposing on BBs, bending patterns in BB triplet MTs are responsive to ciliary beating. BB bending varies as environmental conditions change the ciliary waveform. Bending occurs where striated fibers (SFs) attach to BBs and mutants with short SFs that fail to connect to adjacent BBs exhibit abnormal BB bending, supporting a model in which SFs couple ciliary forces between BBs. Finally, loss of the BB stability protein Poc1, which helps interconnect BB triplet MTs, prevents the normal distributed BB and ciliary bending patterns. Collectively, BBs experience ciliary forces and manage mechanical coupling of these forces to their surrounding cellular architecture for normal ciliary beating

    Evidence of strong small-scale population structure in the Antarctic freshwater copepod Boeckella poppei in lakes on Signy Island, South Orkney Islands

    Get PDF
    Environmental conditions were particularly severe during the Last Glacial Maximum, altering the distribution of the Southern Hemisphere biota, particularly at higher latitudes. The copepod Boeckella poppei is the only macroscopic continental invertebrate species known to be distributed today across the three main biogeographic regions in Antarctica as well as in southern South America. Signy Island (South Orkney Islands) is a unique location for the study of Antarctic freshwater ecosystems due to its location and geographic isolation; it contains 17 lakes in several low altitude catchments. We conducted phylogeographic and demographic analyses using the cox1 gene on 84 individuals of B. poppei from seven lakes across Signy Island. We recorded low levels of genetic diversity and a strong genetic differentiation signal between the eastern and western valleys within the island. Phylogeographic structure and demographic inference analyses suggested at least one asymmetrical dispersal event from west to east. Demographic inference detected a strong signal of population growth during the deglaciation process, which may have followed either (1) a strong genetic bottleneck due to a reduction in population size during the last glacial period, or (2) a founder effect associated with postglacial recolonization of Signy Island from elsewhere. The genetic architecture of this island's populations of B. poppei shows that historical events, rather than continuous dispersal events, likely played a major role in the species' current distribution. Finally, our study considers possible mechanisms for dispersal and colonization success of the most dominant species in the Antarctic freshwater community

    On waiting for something to happen

    Get PDF
    This paper seeks to examine two particular and peculiar practices in which the mediation of apparently direct encounters is made explicit and is systematically theorized: that of the psychoanalytic dialogue with its inward focus and private secluded setting, and that of theatre and live performance, with its public focus. Both these practices are concerned with ways in which “live encounters” impact on their participants, and hence with the conditions under which, and the processes whereby, the coming-together of human subjects results in recognizable personal or social change. Through the rudimentary analysis of two anecdotes, we aim to think these encounters together in a way that explores what each borrows from the other, the psychoanalytic in the theatrical, the theatrical in the psychoanalytic, figuring each practice as differently committed to what we call the “publication of liveness”. We argue that these “redundant” forms of human contact continue to provide respite from group acceptance of narcissistic failure in the post-democratic era through their offer of a practice of waiting

    Islet primary cilia motility controls insulin secretion

    Get PDF
    Primary cilia are specialized cell-surface organelles that mediate sensory perception and, in contrast to motile cilia and flagella, are thought to lack motility function. Here, we show that primary cilia in human and mouse pancreatic islets exhibit movement that is required for glucose-dependent insulin secretion. Islet primary cilia contain motor proteins conserved from those found in classic motile cilia, and their three-dimensional motion is dynein-driven and dependent on adenosine 5\u27-triphosphate and glucose metabolism. Inhibition of cilia motion blocks beta cell calcium influx and insulin secretion. Human beta cells have enriched ciliary gene expression, and motile cilia genes are altered in type 2 diabetes. Our findings redefine primary cilia as dynamic structures having both sensory and motile function and establish that pancreatic islet cilia movement plays a regulatory role in insulin secretion

    Intracellular connections between basal bodies promote the coordinated behavior of motile cilia

    Get PDF
    Hydrodynamic flow produced by multiciliated cells is critical for fluid circulation and cell motility. Hundreds of cilia beat with metachronal synchrony for fluid flow. Cilia-driven fluid flow produces extracellular hydrodynamic forces that cause neighboring cilia to beat in a synchronized manner. However, hydrodynamic coupling between neighboring cilia is not the sole mechanism that drives cilia synchrony. Cilia are nucleated by basal bodies (BBs) that link to each other and to the cell\u27s cortex via BB-associated appendages. The intracellular BB and cortical network is hypothesized to synchronize ciliary beating by transmitting cilia coordination cues. The extent of intracellular ciliary connections and the nature of these stimuli remain unclear. Moreover, how BB connections influence the dynamics of individual cilia has not been established. We show by focused ion beam scanning electron microscopy imaging that cilia are coupled both longitudinally and laterally in the ciliat
    corecore