1,867 research outputs found

    Polar middle atmosphere temperature climatology from Rayleigh lidar measurements at ALOMAR (69° N)

    Get PDF
    Rayleigh lidar temperature profiles have been derived in the polar middle atmosphere from 834 measurements with the ALOMAR Rayleigh/Mie/Raman lidar (69.3° N, 16.0° E) in the years 1997–2005. Since our instrument is able to operate under full daylight conditions, the unique data set presented here extends over the entire year and covers the altitude region 30 km–85 km in winter and 30 km–65 km in summer. Comparisons of our lidar data set to reference atmospheres and ECMWF analyses show agreement within a few Kelvin in summer but in winter higher temperatures below 55 km and lower temperatures above by as much as 25 K, due likely to superior resolution of stratospheric warming and associated mesospheric cooling events. We also present a temperature climatology for the entire lower and middle atmosphere at 69° N obtained from a combination of lidar measurements, falling sphere measurements and ECMWF analyses. Day to day temperature variability in the lidar data is found to be largest in winter and smallest in summer

    Simultaneous lidar observations of temperatures and waves in the polar middle atmosphere on the east and west side of the Scandinavian mountains: a case study on 19/20 January 2003

    Get PDF
    Atmospheric gravity waves have been the subject of intense research for several decades because of their extensive effects on the atmospheric circulation and the temperature structure. The U.&nbsp;Bonn&nbsp;lidar at the Esrange and the ALOMAR RMR lidar at the And&#248;ya Rocket Range are located in northern Scandinavia 250 km apart on the east and west side of the Scandinavian mountain ridge. During January and February&nbsp;2003 both lidar systems conducted measurements and retrieved atmospheric temperatures. On 19/20 January&nbsp;2003 simultaneous measurements for more than 7 h were possible. Although during most of the campaign time the atmosphere was not transparent for the propagation of orographically induced gravity waves, they were nevertheless observed at both lidar stations with considerable amplitudes during these simultaneous measurements. And while the source of the observed waves cannot be determined unambiguously, the observations show many characteristics of orographically excited gravity waves. The wave patterns at ALOMAR show a random distribution with time whereas at the Esrange a persistency in the wave patterns is observable. This persistency can also be found in the distribution of the most powerful vertical wavelengths. The mode values are both at about 5 km vertical wavelength, however the distributions are quite different, narrow at the Esrange with values from &lambda;<i><sub>z</sub></i>=2&ndash;6 km and broad at ALOMAR, covering &lambda;<i><sub>z</sub></i>=1&ndash;12 km vertical wavelength. In particular the difference between the observations at ALOMAR and at the Esrange can be understood by different orographic conditions while the propagation conditions were quite similar. At both stations the waves deposit energy in the atmosphere with increasing altitude, which leads to a decrease of the observed gravity wave potential energy density with altitude. The meteorological situation during these measurements was different from common winter situations. The ground winds were mostly northerlies, changed in the upper troposphere and lower stratosphere to westerlies and returned to northerlies in the middle stratosphere

    Simultaneous lidar observations of temperatures and waves in the polar middle atmosphere on both sides of the Scandinavian mountains: a case study on 19/20 January 2003

    No full text
    International audienceAtmospheric gravity waves have been the subject of intense research for several decades because of their extensive effects on the atmospheric circulation and the temperature structure. The U. Bonn lidar at the Esrange and the ALOMAR RMR lidar at the Andøya Rocket Range are located in northern Scandinavia 250 km apart on either side of the Scandinavian mountain ridge. During January and February 2003 both lidar systems conducted measurements and retrieved atmospheric temperatures. On 19/20 January 2003 simultaneous measurements for more than 7 h were possible. Although during most of the campaign time the atmosphere was not transparent for the propagation of orographically induced gravity waves, they could propagate and were observed at both lidar stations during these simultaneous measurements. The wave patterns at ALOMAR show a random distribution with time whereas at the Esrange a persistency in the wave patterns is observable. This persistency can also be found in the distribution of the most powerful vertical wavelengths. The mode values are both at about 5 km vertical wavelength, however the distributions are quite different, narrow at the Esrange containing values from ?z=2?6 km and broad at ALOMAR, covering ?z=1?12 km vertical wavelength. At both stations the waves deposit energy in the atmosphere with increasing altitude, which leads to a decrease of the observed gravity wave potential energy density with altitude. These measurements show unambigiously orographically induced gravity waves on both sides of the mountains as well as a clear difference of the characteristics of these waves, which might be caused by different excitation and propagation conditions on either side of the Scandinavian mountain ridge

    A Geometrical Method of Decoupling

    Full text link
    The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries - like midplane symmetrie - are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane and (under certain circumstances) the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as for instance the method of Teng and Edwards. In a preceeding paper it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all thinkable cases. Hence a systematic derivation of a more general treatment seemed advisable. In a second paper the author suggested the use of real Dirac matrices as basic tools to coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. It is shown that this algebraic decoupling is closely related to a geometric "decoupling" by the orthogonalization of the vectors E⃗\vec E, B⃗\vec B and P⃗\vec P, that were introduced with the so-called "electromechanical equivalence". We present a structure-preserving block-diagonalization of symplectic or Hamiltonian matrices, respectively. When used iteratively, the decoupling algorithm can also be applied to n-dimensional systems and requires O(n2){\cal O}(n^2) iterations to converge to a given precision.Comment: 13 pages, 1 figur

    Spatial and Temporal Variability in MLT Turbulence Inferred from in situ and Ground-Based Observations During the WADIS-1 Sounding Rocket Campaign

    Get PDF
    In summer 2013 the WADIS-1 sounding rocket campaign was conducted at the Andøya Space Center (ACS) in northern Norway (69° N, 16° E). Among other things, it addressed the question of the variability in mesosphere/lower thermosphere (MLT) turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar near Tromsø. This allowed for horizontal variability to be observed in the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate, ε varied in space in a wavelike manner both horizontally and in the vertical direction. This wavelike modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that the vertical mean value of radar observations of ε agrees reasonably with rocket-borne measurements. In this way defined 〈εradar〉 value reveals clear tidal modulation and results in variation by up to 2 orders of magnitude with periods of 24 h. The 〈εradar〉 value also shows 12 h and shorter (1 to a few hours) modulations resulting in one decade of variation in 〈εradar〉 magnitude. The 24 h modulation appeared to be in phase with tidal change of horizontal wind observed by SAURA-MF radar. Such wavelike and, in particular, tidal modulation of the turbulence dissipation field in the MLT region inferred from our analysis is a new finding of this work

    Greenhouse gas effects on the solar cycle response of water vapour and noctilucent clouds

    Get PDF
    The responses of water vapour (H2O) and noctilucent clouds (NLCs) to the solar cycle are studied using the Leibniz Institute for Middle Atmosphere (LIMA) model and the Mesospheric Ice Microphysics And tranSport (MIMAS) model. NLCs are sensitive to the solar cycle because their formation depends on background temperature and the H2O concentration. The solar cycle affects the H2O concentration in the upper mesosphere mainly in two ways: directly through the photolysis and, at the time and place of NLC formation, indirectly through temperature changes. We found that H2O concentration correlates positively with the temperature changes due to the solar cycle at altitudes above about 82 km, where NLCs form. The photolysis effect leads to an anti-correlation of H2O concentration and solar Lyman-α radiation, which gets even more pronounced at altitudes below ∼ 83 km when NLCs are present. We studied the H2O response to Lyman-α variability for the period 1992 to 2018, including the two most recent solar cycles. The amplitude of Lyman-α variation decreased by about 40 % in the period 2005 to 2018 compared to the preceding solar cycle, resulting in a lower H2O response in the late period. We investigated the effect of increasing greenhouse gases (GHGs) on the H2O response throughout the solar cycle by performing model runs with and without increases in carbon dioxide (CO2) and methane (CH4). The increase of methane and carbon dioxide amplifies the response of water vapour to the solar variability. Applying the geometry of satellite observations, we find a missing response when averaging over altitudes of 80 to 85 km, where H2O has a positive response and a negative response (depending on altitude), which largely cancel each other out. One main finding is that, during NLCs, the solar cycle response of H2O strongly depends on altitude.</p
    • …
    corecore