10,751 research outputs found

    Explicit minimal Scherk saddle towers of arbitrary even genera in R3\R^3

    Get PDF
    Starting from works by Scherk (1835) and by Enneper-Weierstra\ss \ (1863), new minimal surfaces with Scherk ends were found only in 1988 by Karcher (see \cite{Karcher1,Karcher}). In the singly periodic case, Karcher's examples of positive genera had been unique until Traizet obtained new ones in 1996 (see \cite{Traizet}). However, Traizet's construction is implicit and excludes {\it towers}, namely the desingularisation of more than two concurrent planes. Then, new explicit towers were found only in 2006 by Martin and Ramos Batista (see \cite{Martin}), all of them with genus one. For genus two, the first such towers were constructed in 2010 (see \cite{Valerio2}). Back to 2009, implicit towers of arbitrary genera were found in \cite{HMM}. In our present work we obtain {\it explicit} minimal Scherk saddle towers, for any given genus 2k2k, k≥3k\ge3

    Hierarchical Mean-Field Theories in Quantum Statistical Mechanics

    Full text link
    We present a theoretical framework and a calculational scheme to study the coexistence and competition of thermodynamic phases in quantum statistical mechanics. The crux of the method is the realization that the microscopic Hamiltonian, modeling the system, can always be written in a hierarchical operator language that unveils all symmetry generators of the problem and, thus, possible thermodynamic phases. In general one cannot compute the thermodynamic or zero-temperature properties exactly and an approximate scheme named ``hierarchical mean-field approach'' is introduced. This approach treats all possible competing orders on an equal footing. We illustrate the methodology by determining the phase diagram and quantum critical point of a bosonic lattice model which displays coexistence and competition between antiferromagnetism and superfluidity.Comment: 4 pages, 2 psfigures. submitted Phys. Rev.

    The dimerized phase of ionic Hubbard models

    Full text link
    We derive an effective Hamiltonian for the ionic Hubbard model at half filling, extended to include nearest-neighbor repulsion. Using a spin-particle transformation, the effective model is mapped onto simple spin-1 models in two particular cases. Using another spin-particle transformation, a slightly modified model is mapped into an SU(3) antiferromagnetic Heisenberg model whose exact ground state is known to be spontaneously dimerized. From the effective models several properties of the dimerized phase are discussed, like ferroelectricity and fractional charge excitations. Using bosonization and recent developments in the theory of macroscopic polarization, we show that the polarization is proportional to the charge of the elementary excitations
    • …
    corecore