8,097 research outputs found

    Hidden unity in the quantum description of matter

    Full text link
    We introduce an algebraic framework for interacting quantum systems that enables studying complex phenomena, characterized by the coexistence and competition of various broken symmetry states of matter. The approach unveils the hidden unity behind seemingly unrelated physical phenomena, thus establishing exact connections between them. This leads to the fundamental concept of {\it universality} of physical phenomena, a general concept not restricted to the domain of critical behavior. Key to our framework is the concept of {\it languages} and the construction of {\it dictionaries} relating them.Comment: 10 pages 2 psfigures. Appeared in Recent Progress in Many-Body Theorie

    Electronic Orbital Currents and Polarization in Mott Insulators

    Get PDF
    The standard view is that at low energies Mott insulators exhibit only magnetic properties while charge degrees of freedom are frozen out as the electrons become localized by a strong Coulomb repulsion. We demonstrate that this is in general not true: for certain spin textures {\it spontaneous circular electric currents} or {\it nonuniform charge distribution} exist in the ground state of Mott insulators. In addition, low-energy ``magnetic'' states contribute comparably to the dielectric and magnetic functions ϵik(ω)\epsilon_{ik}(\omega) and μik(ω)\mu_{ik}(\omega) leading to interesting phenomena such as rotation the electric field polarization and resonances which may be common for both functions producing a negative refraction index in a window of frequencies

    Sampling system for wheat (Triticum aestivum L) area estimation using digital LANDSAT MSS data and aerial photographs

    Get PDF
    A procedure to estimate wheat (Triticum aestivum L) area using sampling technique based on aerial photographs and digital LANDSAT MSS data is developed. Aerial photographs covering 720 square km are visually analyzed. To estimate wheat area, a regression approach is applied using different sample sizes and various sampling units. As the size of sampling unit decreased, the percentage of sampled area required to obtain similar estimation performance also decreased. The lowest percentage of the area sampled for wheat estimation with relatively high precision and accuracy through regression estimation is 13.90% using 10 square km as the sampling unit. Wheat area estimation using only aerial photographs is less precise and accurate than those obtained by regression estimation

    Quantum critical 5f-electrons avoid singularities in U(Ru,Rh)2Si2

    Get PDF
    We present specific heat measurements of 4% Rh-doped U(Ru,Rh)2Si2 at magnetic fields above the proposed metamagnetic transition field Hm~34 T, revealing striking similarities to the isotructural Ce analog CeRu2Si2, suggesting that strongly renormalized hybridized band models apply equally well to both systems. The vanishing bandwidths as H --> Hm are consistent with a putative quantum critical point close to Hm. The existence of a phase transition into an ordered phase in the vicinity of Hm for 4% Rh-doped U(Ru,Rh)2Si2, but not for CeRu2Si2, is consistent with a stronger super-exchange in the case of the U 5-f system, with irreversible processes at the transition revealing a strong coupling of the 5f orbitals to the lattice, most suggestive of orbital or electric quadrupolar order.Comment: 4 pages, 4 figure

    Quantum Phase Diagram of the t-Jz Chain Model

    Full text link
    We present the quantum phase diagram of the one-dimensional tt-JzJ_z model for arbitrary spin (integer or half-integer) and sign of the spin-spin interaction JzJ_z, using an {\it exact} mapping to a spinless fermion model that can be solved {\it exactly} using the Bethe ansatz. We discuss its superconducting phase as a function of hole doping ν\nu. Motivated by the new paradigm of high temperature superconductivity, the stripe phase, we also consider the effect the antiferromagnetic background has on the tt-JzJ_z chain intended to mimic the stripe segments.Comment: 4 pages, 2 figure

    Magnetic Excitations in the Spin-1 Anisotropic Heisenberg Antiferromagnetic Chain System NiCl2_2-4SC(NH2_2)2_2

    Full text link
    NiCl2_2-4SC(NH2_2)2_2 (DTN) is a quantum S=1 chain system with strong easy-pane anisotropy and a new candidate for the Bose-Einstein condensation of the spin degrees of freedom. ESR studies of magnetic excitations in DTN in fields up to 25 T are presented. Based on analysis of the single-magnon excitation mode in the high-field spin-polarized phase and previous experimental results [Phys. Rev. Lett. 96, 077204 (2006)], a revised set of spin-Hamiltonian parameters is obtained. Our results yield D=8.9D=8.9 K, Jc=2.2J_c=2.2 K, and Ja,b=0.18J_{a,b}=0.18 K for the anisotropy, intrachain, and interchain exchange interactions, respectively. These values are used to calculate the antiferromagnetic phase boundary, magnetization and the frequency-field dependence of two-magnon bound-state excitations predicted by theory and observed in DTN for the first time. Excellent quantitative agreement with experimental data is obtained
    • …
    corecore