497 research outputs found

    Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on Treatments.

    Get PDF
    Published onlineJournal ArticleReviewSince its emergence in the 1990s, White Spot Disease (WSD) has had major economic and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has experienced billion dollar losses through WSD. The disease is caused by the White Spot Syndrome Virus (WSSV), a large dsDNA virus and the only member of the Nimaviridae family. Susceptibility to WSSV in a wide range of crustacean hosts makes it a major risk factor in the translocation of live animals and in commodity products. Currently there are no effective treatments for this disease. Understanding the molecular basis of disease processes has contributed significantly to the treatment of many human and animal pathogens, and with a similar aim considerable efforts have been directed towards understanding host-pathogen molecular interactions for WSD. Work on the molecular mechanisms of pathogenesis in aquatic crustaceans has been restricted by a lack of sequenced and annotated genomes for host species. Nevertheless, some of the key host-pathogen interactions have been established: between viral envelope proteins and host cell receptors at initiation of infection, involvement of various immune system pathways in response to WSSV, and the roles of various host and virus miRNAs in mitigation or progression of disease. Despite these advances, many fundamental knowledge gaps remain; for example, the roles of the majority of WSSV proteins are still unknown. In this review we assess current knowledge of how WSSV infects and replicates in its host, and critique strategies for WSD treatment.This work was funded by the Open Innovation Platform at the University of Exeter (Open Innovation Fund Initiative PHSW029) and by the Centre for Environment, Fisheries and Aquaculture Science (Cefas) (under seedcorn project DP318 to GDS) under the Strategic Alliance partnership between the University of Exeter and Cefas

    De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways.

    Get PDF
    Journal ArticleCopyright © 2015 Verbruggen et al.BACKGROUND: The European shore crab, Carcinus maenas, is used widely in biomonitoring, ecotoxicology and for studies into host-pathogen interactions. It is also an important invasive species in numerous global locations. However, the genomic resources for this organism are still sparse, limiting research progress in these fields. To address this resource shortfall we produced a C. maenas transcriptome, enabled by the progress in next-generation sequencing technologies, and applied this to assemble information on the innate immune system in this species. RESULTS: We isolated and pooled RNA for twelve different tissues and organs from C. maenas individuals and sequenced the RNA using next generation sequencing on an Illumina HiSeq 2500 platform. After de novo assembly a transcriptome was generated encompassing 212,427 transcripts (153,699 loci). The transcripts were filtered, annotated and characterised using a variety of tools (including BLAST, MEGAN and RSEM) and databases (including NCBI, Gene Ontology and KEGG). There were differential patterns of expression for between 1,223 and 2,741 transcripts across tissues and organs with over-represented Gene Ontology terms relating to their specific function. Based on sequence homology to immune system components in other organisms, we show both the presence of transcripts for a series of known pathogen recognition receptors and response proteins that form part of the innate immune system, and transcripts representing the RNAi, Toll-like receptor signalling, IMD and JAK/STAT pathways. CONCLUSIONS: We have produced an assembled transcriptome for C. maenas that provides a significant molecular resource for wide ranging studies in this species. Analysis of the transcriptome has revealed the presence of a series of known targets and functional pathways that form part of their innate immune system and illustrate tissue specific differences in their expression patterns.Cefas Seedcorn Contract #DP318University of Exeter’s Open Innovation PlatformWellcome Trust Institutional Strategic Support Awar

    Polynomial Carleson operators along monomial curves in the plane

    Get PDF
    We prove LpL^p bounds for partial polynomial Carleson operators along monomial curves (t,tm)(t,t^m) in the plane R2\mathbb{R}^2 with a phase polynomial consisting of a single monomial. These operators are "partial" in the sense that we consider linearizing stopping-time functions that depend on only one of the two ambient variables. A motivation for studying these partial operators is the curious feature that, despite their apparent limitations, for certain combinations of curve and phase, L2L^2 bounds for partial operators along curves imply the full strength of the L2L^2 bound for a one-dimensional Carleson operator, and for a quadratic Carleson operator. Our methods, which can at present only treat certain combinations of curves and phases, in some cases adapt a TT∗TT^* method to treat phases involving fractional monomials, and in other cases use a known vector-valued variant of the Carleson-Hunt theorem.Comment: 27 page

    How do abiotic environmental conditions influence shrimp susceptibility to disease? A critical analysis focussed on White Spot Disease

    Get PDF
    This is the author accepted manuscript (article in press version). The final version is available from the publisher via the DOI in this recordWhite Spot Syndrome Virus (WSSV) causes White Spot Disease (WSD) and is historically the most devastating disease in the shrimp industry. Global losses from this disease have previously exceeded 3bnannually,havingamajorimpactonaglobalindustryworthUS3 bn annually, having a major impact on a global industry worth US19 bn per annum. Shrimp are cultured predominantly in enclosed ponds that are subject to considerable fluctuations in abiotic conditions and WSD outbreaks are increasingly linked to periods of extreme weather, which may cause major fluctuations in pond culture conditions. Combined with the intensity of production in these systems, the resulting suboptimal physicochemical conditions have a major bearing on the susceptibility of shrimp to infection and disease. Current knowledge indicates that pond temperature and salinity are major factors determining outbreak severity. WSSV appears to be most virulent in water temperatures between 25 and 28 °C and salinities far removed from the isoosmotic point of shrimp. Elevated temperatures (>30 °C) may protect against WSD, depending on the stage of infection, however the mechanisms mediating this effect have not been well established. Other factors relating to water quality that may play key roles in determining outbreak severity include dissolved oxygen concentration, nitrogenous compound concentration, partial pressure of carbon dioxide and pH, but data on their impacts on WSSV susceptibility in cultured shrimps is scarce. This illustrates a major research gap in our understanding of the influence of environmental conditions on disease. For example, it is not clear whether temperature manipulations can be used effectively to prevent or mitigate WSD in cultured shrimp. Therefore, developing our understanding of the impact of environmental conditions on shrimp susceptibility to WSSV may provide insight for WSD mitigation when, even after decades of research, there is no effective practical prophylaxis or treatment.Centre for Environment, Fisheries and Aquaculture Scienc

    The case for low-level BACE1 inhibition for the prevention of Alzheimer disease

    Get PDF
    Alzheimer disease (AD) is the most common cause of dementia in older individuals (>65 years) and has a long presymptomatic phase. Preventive therapies for AD are not yet available, and potential disease-modifying therapies targeting amyloid-β plaques in symptomatic stages of AD have only just been approved in the United States. Small-molecule inhibitors of β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1; also known as β-secretase 1) reduce the production of amyloid-β peptide and are among the most advanced drug candidates for AD. However, to date all phase II and phase III clinical trials of BACE inhibitors were either concluded without benefit or discontinued owing to futility or the occurrence of adverse effects. Adverse effects included early, mild cognitive impairment that was associated with all but one inhibitor; preliminary results suggest that the cognitive effects are non-progressive and reversible. These discontinuations have raised questions regarding the suitability of BACE1 as a drug target for AD. In this Perspective, we discuss the status of BACE inhibitors and suggest ways in which the results of the discontinued trials can inform the development of future clinical trials of BACE inhibitors and related secretase modulators as preventative therapies. We also propose a series of experiments that should be performed to inform ‘go–no-go’ decisions in future trials with BACE inhibitors and consider the possibility that low levels of BACE1 inhibition could avoid adverse effects while achieving efficacy for AD prevention

    Diagnosis and management of Guillain–Barré syndrome in ten steps

    Get PDF
    Guillain–Barré syndrome (GBS) is a rare, but potentially fatal, immune-mediated disease of the peripheral nerves and nerve roots that is usually triggered by infections. The incidence of GBS can therefore increase during outbreaks of infectious diseases, as was seen during the Zika virus epidemics in 2013 in French Polynesia and 2015 in Latin America. Diagnosis and management of GBS can be complicated as its clinical presentation and disease course are heterogeneous, and no international clinical guidelines are currently available. To support clinicians, especially in the context of an outbreak, we have developed a globally applicable guideline for the diagnosis and management of GBS. The guideline is based on current literature and expert consensus, and has a ten-step structure to facilitate its use in clinical practice. We first provide an introduction to the diagnostic criteria, clinical variants and differential diagnoses of GBS. The ten steps then cover early recognition and diagnosis of GBS, admission to the intensive care unit, treatment indication and selection, monitoring and treatment of disease progression, prediction of clinical course and outcome, and management of complications and sequelae

    Resistance to white spot syndrome virus in the European shore crab is associated with suppressed virion trafficking and heightened immune responses

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordData availability statement: The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/genbank/, SRR14278211 - SRR14278323 and https://doi.org/10.6084/m9.figshare.21225128, as well as https://doi.org/10.6084/m9.figshare.21435831.INTRODUCTION: All decapod crustaceans are considered potentially susceptible to White Spot Syndrome Virus (WSSV) infection, but the degree of White Spot Disease (WSD) susceptibility varies widely between species. The European shore crab Carcinus maenas can be infected with the virus for long periods of time without signs of disease. Given the high mortality rate of susceptible species, the differential susceptibility of these resistant hosts offers an opportunity to investigate mechanisms of disease resistance. METHODS: Here, the temporal transcriptional responses (mRNA and miRNA) of C. maenas following WSSV injection were analysed and compared to a previously published dataset for the highly WSSV susceptible Penaeus vannamei to identify key genes, processes and pathways contributing to increased WSD resistance. RESULTS: We show that, in contrast to P. vannamei, the transcriptional response during the first 2 days following WSSV injection in C. maenas is limited. During the later time points (7 days onwards), two groups of crabs were identified, a recalcitrant group where no replication of the virus occurred, and a group where significant viral replication occurred, with the transcriptional profiles of the latter group resembling those of WSSV-susceptible species. We identify key differences in the molecular responses of these groups to WSSV injection. DISCUSSION: We propose that increased WSD resistance in C. maenas may result from impaired WSSV endocytosis due to the inhibition of internal vesicle budding by dynamin-1, and a delay in movement to the nucleus caused by the downregulation of cytoskeletal transcripts required for WSSV cytoskeleton docking, during early stages of the infection. This response allows resistant hosts greater time to fine-tune immune responses associated with miRNA expression, apoptosis and the melanisation cascade to defend against, and clear, invading WSSV. These findings suggest that the initial stages of infection are key to resistance to WSSV in the crab and highlight possible pathways that could be targeted in farmed crustacean to enhance resistance to WSD.University of Exeter (UK) Open Innovation PlatformCentre for Environment, Fisheries and Aquaculture Science (Weymouth, UK)Wellcome TrustBiotechnology and Biological Sciences Research Council (BBSRC

    Formulation of Biologically-Inspired Silk-Based Drug Carriers for Pulmonary Delivery Targeted for Lung Cancer

    Get PDF
    The benefits of using silk fibroin, a major protein in silk, are widely established in many biomedical applications including tissue regeneration, bioactive coating and in vitro tissue models. The properties of silk such as biocompatibility and controlled degradation are utilized in this study to formulate for the first time as carriers for pulmonary drug delivery. Silk fibroin particles are spray dried or spray-freeze-dried to enable the delivery to the airways via dry powder inhalers. The addition of excipients such as mannitol is optimized for both the stabilization of protein during the spray-freezing process as well as for efficient dispersion using an in vitro aerosolisation impactor. Cisplatin is incorporated into the silk-based formulations with or without cross-linking, which show different release profiles. The particles show high aerosolisation performance through the measurement of in vitro lung deposition, which is at the level of commercially available dry powder inhalers. The silk-based particles are shown to be cytocompatible with A549 human lung epithelial cell line. The cytotoxicity of cisplatin is demonstrated to be enhanced when delivered using the cross-linked silk-based particles. These novel inhalable silk-based drug carriers have the potential to be used as anti-cancer drug delivery systems targeted for the lungs

    Using structural motif descriptors for sequence-based binding site prediction

    Get PDF
    All authors are with the Biotechnological Center, TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany and -- Wan Kyu Kim is with the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USABackground: Many protein sequences are still poorly annotated. Functional characterization of a protein is often improved by the identification of its interaction partners. Here, we aim to predict protein-protein interactions (PPI) and protein-ligand interactions (PLI) on sequence level using 3D information. To this end, we use machine learning to compile sequential segments that constitute structural features of an interaction site into one profile Hidden Markov Model descriptor. The resulting collection of descriptors can be used to screen sequence databases in order to predict functional sites. -- Results: We generate descriptors for 740 classified types of protein-protein binding sites and for more than 3,000 protein-ligand binding sites. Cross validation reveals that two thirds of the PPI descriptors are sufficiently conserved and significant enough to be used for binding site recognition. We further validate 230 PPIs that were extracted from the literature, where we additionally identify the interface residues. Finally we test ligand-binding descriptors for the case of ATP. From sequences with Swiss-Prot annotation "ATP-binding", we achieve a recall of 25% with a precision of 89%, whereas Prosite's P-loop motif recognizes an equal amount of hits at the expense of a much higher number of false positives (precision: 57%). Our method yields 771 hits with a precision of 96% that were not previously picked up by any Prosite-pattern. -- Conclusion: The automatically generated descriptors are a useful complement to known Prosite/InterPro motifs. They serve to predict protein-protein as well as protein-ligand interactions along with their binding site residues for proteins where merely sequence information is available.Institute for Cellular and Molecular [email protected]
    • …
    corecore