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POLYNOMIAL CARLESON OPERATORS ALONG MONOMIAL

CURVES IN THE PLANE

SHAOMING GUO, LILLIAN B. PIERCE, JORIS ROOS AND PO-LAM YUNG

Abstract. We prove Lp bounds for partial polynomial Carleson operators along mono-
mial curves (t, tm) in the plane R2 with a phase polynomial consisting of a single mono-
mial. These operators are “partial” in the sense that we consider linearizing stopping-
time functions that depend on only one of the two ambient variables. A motivation for
studying these partial operators is the curious feature that, despite their apparent limita-
tions, for certain combinations of curve and phase, L2 bounds for partial operators along
curves imply the full strength of the L2 bound for a one-dimensional Carleson operator,
and for a quadratic Carleson operator. Our methods, which can at present only treat
certain combinations of curves and phases, in some cases adapt a TT ∗ method to treat
phases involving fractional monomials, and in other cases use a known vector-valued
variant of the Carleson-Hunt theorem.

1. Introduction

1.1. Historical background. In 1966, Carleson [Car66] proved an L2 bound for the
Carleson operator

f(x) 7−→ sup
N∈R

∣∣∣p.v.
∫

R

f(x− t)eiNtdt

t

∣∣∣. (1.1)

This provided the key step in proving almost everywhere convergence of Fourier series
of L2 functions and thereby resolved a conjecture of Luzin. The Lp boundedness of the
Carleson operator for 1 < p <∞ was then shown by Hunt [Hun68], and further proofs of
Carleson’s theorem were later given by Fefferman [Fef73] and Lacey and Thiele [LT00].

E. M. Stein suggested the following generalization: fix a natural number d and consider
the operator given by

f(x) 7−→ sup
P

∣∣∣∣
∫

Rn

f(x− y)eiP (y)K(y)dy

∣∣∣∣ , (1.2)

where K is an appropriately chosen Calderón-Zygmund kernel and the supremum runs
over all real-valued polynomials P of degree at most d in n variables. Stein asked whether
this polynomial Carleson operator is bounded from Lp to Lp for 1 < p < ∞. Stein and
Wainger [SW01] used a TT ∗ argument and certain oscillatory integral estimates of van der
Corput type to obtain Lp bounds for a variant of the operator (1.2), where the polynomial
P is restricted to the set of polynomials of degree at most d that vanish to at least second
order at the origin (so in particular, have no linear term; of course constant terms may be
disregarded). In dimension n = 1, a positive answer to Stein’s full question was provided
by Lie [Lie09], [Lie11], who developed a sophisticated time-frequency approach. In higher
dimensions n > 1, boundedness of the full polynomial Carleson operator remains an open
problem.

Pierce and Yung [PY15] have introduced a new aspect to the study of polynomial Car-
leson operators, by considering an operator that also features Radon-type behavior in the
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sense of integration along an appropriate hypersurface. More precisely, they considered
the operator

f(x, y) 7−→ sup
P

∣∣∣∣
∫

Rn

f(x− t, y − |t|2)eiP (t)K(t)dt

∣∣∣∣ , (1.3)

acting on functions f on R
n ×R where n ≥ 2, K is a Calderón-Zygmund kernel, and the

supremum runs over a suitable vector subspace of the space of all real-valued polynomials
P of degree at most d in n variables. In particular, this allowable subspace requires that
the polynomials considered should omit linear as well as certain types of quadratic terms.
The key result of [PY15] then proves Lp, 1 < p < ∞, bounds for this operator, via a
method of proof based on square functions, TT ∗ techniques in the spirit of Stein and
Wainger [SW01], and certain refined van der Corput estimates. Notably, the method of
[PY15] does not work in the planar case n = 1, which is the main subject of the present
paper. Our goal here is to prove bounds for a new class of polynomial Carleson operators
along curves in the plane, and to demonstrate the curious feature that even partial results
for these new operators along curves are in some sense as strong as Carleson’s original
theorem (and its variants) in the purely one-dimensional setting.

1.2. Statements of main results. Let m, d be positive integers and f a Schwartz
function on R

2. For N ∈ R let

HNf(x, y) = Hm,d
N f(x, y) = p.v.

∫

R

f(x− t, y − tm)eiNtd dt

t
.

The natural goal, in the spirit of Carleson operators, is to prove that for all 1 < p <∞,
∥∥∥∥sup
N∈R

|HNf |

∥∥∥∥
Lp(dxdy)

≤ C‖f‖Lp(dxdy). (1.4)

This would be analogous to the results of Stein and Wainger [SW01] in the Radon-type
context of (1.2). We recall the useful strategy of linearization via a linearizing stopping-
time function: we define for an arbitrary measurable function N(x, y) : R2 7→ R the
operator f 7→ HN(x,y)f(x, y). Then proving

‖HN(x,y)f(x, y)‖Lp(dxdy) ≤ C‖f‖Lp(dxdy)

with a constant C independent of the choice of the function N is equivalent to proving
(1.4).

To prove this inequality appears to be out of reach of our current methods. Recalling
instead that a special case of [SW01] already shows that for any integer d > 1 the operator

f(x) 7−→ p.v.

∫

R

f(x− t)eiN(x)td dt

t
(1.5)

is bounded on Lp(R) for 1 < p <∞, we are motivated to consider the case when we twist
the operator (1.5) with an additional Radon transform, while preserving the dependence
of the linearizing function N on one variable only.

Thus for an arbitrary measurable function N : R → R, we define our main operators
of interest:

Am,d
N f(x, y) := Hm,d

N(x)f(x, y) (1.6)

and

Bm,d
N f(x, y) := Hm,d

N(y)f(x, y). (1.7)
2



Before turning to our main results, we briefly note that certain special cases of these
operators may be treated immediately: namely, for d ≥ 1 the operators A1,d

N and B1,d
N

are bounded on Lp(R2) for 1 < p <∞. Indeed even the operator supN∈R |H
1,d
N f(x, y)| is

bounded on Lp(R2) for 1 < p < ∞. This follows immediately by integrating Carleson’s
theorem for (1.1) (in the case d = 1), or the result of Stein and Wainger [SW01] for (1.2)
(in the case d > 1), along the straight lines of slope 1 in R

2, using Fubini’s thoerem.
The remaining cases, with m > 1, are highly nontrivial. We formulate our main results

as two theorems, which despite superficial similarities have quite different flavors, due to
the differing symmetry groups of the involved operators (see Section 2.1). Our first main
result can be stated as follows.

Theorem 1.1. Let N : R → R be a measurable function and d,m > 1, d 6= m integers.
Then for 1 < p <∞,

∥∥∥Am,d
N f

∥∥∥
p
≤ C‖f‖p, (1.8)

∥∥∥Bm,d
N f

∥∥∥
p
≤ C‖f‖p, (1.9)

with the constant 0 < C <∞ depending only on d,m, p and not on N, f .

Note that uniformity of (1.8) in N is tantamount to the estimate
∥∥∥∥sup
N∈R

‖HNf(x, y)‖Lp(dy)

∥∥∥∥
Lp(dx)

≤ C‖f‖p. (1.10)

Similarly, (1.9) corresponds to
∥∥∥∥sup
N∈R

‖HNf(x, y)‖Lp(dx)

∥∥∥∥
Lp(dy)

≤ C‖f‖p. (1.11)

Our proof of Theorem 1.1 proceeds via van der Corput estimates, and does not depend
on Carleson’s theorem; this is in contrast to our second result, which we state as follows.

Theorem 1.2. Let N : R → R be a measurable function. Then for 1 < p <∞,
∥∥∥Am,1

N f
∥∥∥
p
≤ C‖f‖p, for any integer m ≥ 3, (1.12)

∥∥∥Bm,m
N f

∥∥∥
p
≤ C‖f‖p, for any integer m ≥ 2, (1.13)

with the constant C depending only on m, p and not on N, f .

A novel feature of our proof of Theorem 1.2 is that we combine Carleson’s theorem with
TT ∗ estimates in the spirit of Stein and Wainger. One surprising feature of our proof,
compared to the original work [SW01] is that these TT ∗ estimates can handle certain
cases of phase polynomials with a linear term (c.f. estimates (5.16)–(5.18)).

Remark 1.3. One is led to ask what happens to the remaining nontrivial (m > 1) cases
that are not covered by Theorems 1.1 and 1.2, namely A2,1

N , Am,m
N and Bm,1

N where m > 1
is an integer. The key again lies in the symmetries of these operators: they are different
from the symmetries of the operators in Theorems 1.1 and 1.2, and this points to why
our current proofs do not apply in these situations. Despite these difficulties, at least the
L2 bounds for all these problematic cases still follow from known Carleson theorems via
partial Fourier transform and Plancherel’s theorem; see Section 6.2. The full Lp bounds
remain an open problem in these cases.
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1.3. Consequences of bounding partial Carleson operators. We now turn to the
surprising feature that L2 bounds for partial operators along curves imply L2 bounds for
Carleson-type operators acting on functions of one variable. Here we summarize several
deductions of this kind; proofs are given in Section 6.

First, L2 bounds for certain operators Am,1 and Bm,m are in some sense equivalent
to an L2 bound for Carleson’s operator. More precisely, for any integer m ≥ 1, the
L2 boundedness of Am,1

N implies the L2 boundedness for the one-dimensional Carleson
operator (1.1), by a Plancherel argument (see Section 6.1). In the other direction, we
use the boundedness of the maximal truncated Carleson operator (3.2) (itself dominated
by the Carleson operator according to the inequality (7.1)) to prove the L2 boundedness
of Am,1 for m ≥ 3 in Theorem 1.2, while the L2 bound for A2,1 may be deduced from
Carleson’s theorem (see Section 6.2).

Similarly, for any odd integer m ≥ 1, the L2 boundedness of Bm,m
N implies an L2 bound

for the one-dimensional Carleson operator (see Section 6.1), while in the other direction
we use the maximal truncated Carleson operator to prove Theorem 1.2.

Of course, the most natural challenge in the setting of Carleson operators along curves
in the plane is the quadratic Carleson operator along the parabola defined by

C
parf(x, y) = sup

N∈R2

|Hpar
N f(x, y)| , (1.14)

where for f a Schwartz function on R
2,

Hpar
N f(x, y) = p.v.

∫

R

f(x− t, y − t2)eiN1t+iN2t2
dt

t
.

This operator combines all the features that have proved troublesome in the study of
(1.3) in [PY15]: apart from acting on functions in the plane, the phase consists entirely
of the problematic linear and quadratic terms. Assuming that N1, N2 : R → R are
arbitrary measurable functions depending only on x, observe that for N1 = 0 this gives
our operator A2,2 (which our present arguments cannot treat) and for N2 = 0 it gives our
problematic operator A2,1 (which again our present arguments cannot treat). So we are
quite far from knowing how to bound (1.14).

But in the spirit of studying partial versions of Carleson operators, we point out that
even a partial estimate for Hpar

N of the form
∥∥∥∥ sup
N∈R2

‖Hpar
N f‖L2(dy)

∥∥∥∥
L2(dx)

≤ C‖f‖2, (1.15)

would suffice to imply an analogue over R of Lie’s L2 result on the quadratic Carleson
operator [Lie09]; see Section 6.1 for details. These considerations indicate the interest in
pursuing the partial Carleson operators we consider.

2. Overview of the methods

2.1. Symmetries of our operators. To make precise the differences between Theorems
1.1 and 1.2, we now characterize symmetries of the operators Am,d

N and Bm,d
N as m and d

vary. First there is an anisotropic dilation symmetry. If we denote

Dλf(x, y) = f(λx, λmy) (2.1)

for λ > 0, then
D−1

λ Hm,d
N Dλ = Hm,d

λ−dN
.

Second, due to the convolution structure, Hm,d
N commutes with translations of the plane,

for any m, d.
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Third, the operators in Theorem 1.2 additionally have certain modulation symmetries.
Let

Mξ,ζf(x, y) = eixξ+iyζf(x, y) (2.2)

for ξ, ζ ∈ R. Then if d = 1, we have

M−1
ξ,0A

m,1
N Mξ,0 = Am,1

N−ξ (2.3)

for all ξ ∈ R. Similarly if d = m, we have

M−1
0,ζB

m,m
N M0,ζ = Bm,m

N−ζ (2.4)

for all ζ ∈ R. Simultaneous translation and modulation invariance is a characteristic
property of the Carleson operator. Hence we are led to use Carleson’s theorem in parts
of the proof of Theorem 1.2.

Finally, we remark briefly that for A2,1
N , the modulation symmetries are more involved.

The problem is that in addition to the modulation symmetry (2.3), it also has a certain
quadratic modulation symmetry. Let

Qbf(x, y) = eibx
2

f(x, y). (2.5)

Then
Q−1

b M−1
0,bA

2,1
N M0,bQb = A2,1

N−2bx. (2.6)

Recall that for the operator A2,1
N , the linearizing function N depends on the variable x.

Thus, by N − 2bx we mean the function x 7→ N(x) − 2bx, also only depending on x.
Moreover, notice that in (2.6), the linear modulation acts on the y variable, while the
quadratic modulation acts on the x variable. Hence there is a certain “twist” in this
modulation symmetry.

2.2. Method of proof: Theorem 1.1. We now sketch the proof of Theorem 1.1. The
strategy follows broadly that of Stein and Wainger, but the means of obtaining the key
estimates is necessarily different. More precisely, we proceed by splitting the integral
defining Am,d

N or Bm,d
N into two parts, according to the size of the phase Ntd: for Ntd

sufficiently small, we compare the resulting operator to a maximal truncated Hilbert
transform along a curve, and for Ntd large, we use TT ∗ and van der Corput estimates to
handle the operator that arises. It is in the treatment of this latter operator where we
must assume the stopping time depends on one variable only, so that we may perform a
Fourier transform in the free variable, along which the linearizing function is constant.
This idea goes back to Coifman and El Kohen, who used it in the context of Hilbert
transforms along vector fields (see the discussion in Bateman and Thiele [BT13]).

Another important ingredient is a certain refinement of Theorem 1 of [SW01]. The
main novelty is that our core estimate, which we now record, allows us to consider phases
with monomials of fractional exponents.

Lemma 2.1. Fix real numbers α, β > 0, α 6= β, α, β 6= 1. Let ψ be smooth and supported
on [1, 2]. For λ = (λ1, λ2) ∈ R

2 and t > 0, let

Φλ(t) = eiλ1tα+iλ2tβψ(t)/t, (2.7)

and set Φλ(−t) = 0. For a > 0, let

Φλ
a(t) = a−1Φλ(t/a). (2.8)

Let |λ| = |λ1|+ |λ2|. Then there exists γ0 > 0 such that for all r ≥ 1 and all F ∈ L2(R),∥∥∥∥∥ sup
a>0,|λ|≥r

|F ∗ Φλ
a |

∥∥∥∥∥
L2(dx)

. r−γ0‖F‖L2(dx).

5



Remark 2.2. We note that as a byproduct of the proof of Lemma 2.1, γ0 can be chosen
to be independent of α, β.

Remark 2.3. For α, β ∈ N this is merely a special case of Stein and Wainger’s Theorem 1
in [SW01], but to prove Lemma 2.1 in full generality requires estimates of a very different
flavor. See also work of the first author [Guo15] for a similar result regarding a phase
comprised of a single fractional monomial. Fractional exponents appear naturally during
the analysis of the operators Bm,d via a change of variables tm → t (for instance, see
(4.6) and (5.14)). (In addition, Theorems 1.1 and 1.2 could be somewhat generalized to
non-integral m, d, but we have chosen the integer setting for our main results, to avoid
unnecessary complications.)

The key contrast of our proof of Lemma 2.1 with the corresponding result in Stein
and Wainger [SW01] appears in the proof of Lemma 4.1. The strategy is to linearize the
operator F 7→ supa>0,|λ|≥r |F ∗ Φλ

a | using stopping-times for a, λ, and to bound an oscil-
latory integral by showing that for all but a small exceptional region of the integral, the
phase has a large derivative of some order. Our proof enables us to make the exceptional
region independent of the precise stopping-time λ, thus obviating the need for the small-
set maximal functions that appear in [SW01]; at the cost of restricting our attention to
phases with only two monomials, we are also able to handle fractional powers.

2.3. Method of proof: Theorem 1.2. Next, we sketch the proof of Theorem 1.2. To
analyze Am,1

N , where m ≥ 3 is an integer, we first decompose the operator as

Am,1
N =

∑

k∈Z

Am,1
N ◦ Pk,

where Pk is a Littlewood-Paley projection onto frequency ∼ 2k in the y-variable. In view
of the modulation invariance (2.3) in the x-variable, this is the only viable Littlewood-
Paley decomposition we can use for the operator Am,1; a Littlewood-Paley decomposition
in the x-variable is doomed to fail. We also note that the Littlewood-Paley projection
in the y-variable commutes with Am,1

N , since the stopping time N in the operator Am,1
N

depends only on x but not on y.
Now to analyze each Littlewood-Paley piece of Am,1

N , we decompose the integral

Am,1
N ◦ Pkf(x, y) =

∫

R

(Pkf)(x− t, y − tm)eiN(x)t dt

t

into two parts, where t is small or large compared to the frequency 2k. For t small,
we compare the resulting integral to a maximally truncated Carleson operator in the
x-variable; this is natural in view of the remarks in Section 1.3. The error will be given
by a strong maximal function, since Pkf is localized in frequency in the y-variable. For
t large, we need to use a van der Corput estimate: again we take advantage of the fact
that the stopping time N of Am,1

N depends only on x, to take a partial Fourier transform
in the y-variable.

In order to reassemble the various Littlewood-Paley pieces, the main ingredient is a
vector-valued estimate for the maximally truncated Carleson operator (Theorem A).

A similar strategy works for Bm,m
N for m ≥ 2 an integer. There is, however, an interest-

ing distinction depending on whether m is odd or even: when m is odd, we need to use
the maximally truncated Carleson operator in the y-variable, whereas when m is even,
the component of the operator that would correspond to the maximally truncated Car-
leson operator magically vanishes. (See equation (5.5), and the discussion immediately
thereafter.)
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Roughly speaking, our proof of Theorem 1.2 works because the linearizing function
depends on the same variable in which the modulation invariance occurs, so the other
variable is at our disposal to use Plancherel’s theorem and localize in frequency via
Littlewood-Paley decomposition. Essential parts of this proof fail in the remaining cases
A2,1, Am,m and Bm,1, where m > 1. For Am,m, the linearizing function varies with x, so
we would like to use Plancherel’s theorem in y and localize in the y frequency. However,
the modulation invariance in (2.4) causes translation invariance in the y frequency so
that any attempt at doing a Littlewood-Paley decomposition is doomed from the start.
Similar behavior occurs for Bm,1.

3. Preliminaries

3.1. Notation. The notation A . B always means A ≤ C · B with 0 < C < ∞
depending only on m, d and the function ψ chosen below (and within the proof of Lemma
2.1, on α, β). Similarly, A ≈ B means C1A ≤ B ≤ C2A with 0 < C1 ≤ C2 < ∞ and

the same dependence. We use the Fourier transform f̂(ξ) =
∫
R
f(x)e−iξxdx with inverse

ǧ(x) = (2π)−1
∫
R
g(ξ)eixξdξ and Plancherel identity ‖f‖2 = (2π)−1/2‖f̂‖2.

3.2. Littlewood-Paley decomposition. Once and for all we fix a smooth function
ψ : R → R supported on {t : 1/2 ≤ |t| ≤ 2} such that 0 ≤ ψ(t) ≤ 1 and

∑
k∈Z ψk(t) = 1

for all t 6= 0, where ψk(t) = ψ(2−kt). Define the associated Littlewood-Paley projection
of a function F on R by

Fk(w) = PkF (w) =

∫

R

F (u)ψ̌k(w − u)du, (3.1)

where ψ̌k denotes the inverse Fourier transform of the function ψk. The standard Littlewood-
Paley estimates apply, in the form

‖F‖p .
∥∥∥
(∑

k

|PkF |
2

)1/2 ∥∥∥
p
. ‖F‖p.

We will apply this in the x-variable or y-variable of f(x, y), depending which is free.

3.3. Vector-valued inequalities. In this section we collect several vector-valued esti-
mates that will play important roles in our work.

Define the maximally truncated Carleson operator by

C
∗F (x) = sup

N∈R,ε>0

∣∣∣p.v.
∫

|t|≤ε

F (x− t)eiNtdt

t

∣∣∣. (3.2)

Note that this operator is usually studied with the inequality |t| ≤ ε being reversed; we
may of course reduce to that case by subtracting the Carleson operator from C ∗.

Theorem A. For 1 < p <∞,
∥∥∥
(∑

k∈Z

|C ∗Fk|
2
)1/2∥∥∥

p
.
∥∥∥
(∑

k∈Z

|Fk|
2
)1/2∥∥∥

p
, (3.3)

with a constant depending only on p.

We assemble the necessary results to verify Theorem A in a brief appendix (Section
7.1).

7



Next, let M be the maximal operator of Radon-type along the curve (t, tm):

M f(x, y) = sup
r>0

1

2r

r∫

−r

|f(x− t, y − tm)|dt. (3.4)

This is known to be a bounded operator of Lp for 1 < p ≤ ∞ (e.g. by a small modification
of the proof in the case of the parabola (t, t2), [Ste93, Chapter XI §1.2, §2]). We require
a vector-valued inequality for fk := Pkf , with Pk acting on either the x-variable or
y-variable (to be specified later):

Theorem B. For 1 < p <∞ we have
∥∥∥
(∑

k∈Z

|M fk|
2
)1/2∥∥∥

p
.
∥∥∥
(∑

k∈Z

|fk|
2
)1/2∥∥∥

p
, (3.5)

with a constant depending only on p.

This result is stated in [RdFRT86, Theorem 2.5], as a consequence obtainable from
a more general theory. For completeness, we offer a brief, self-contained proof for our
special case in an appendix (Section 7.2); we thank E. M. Stein for sharing with us
this method of proof, which appears in a significantly more general form in the preprint
[MST15, Appendix A, Theorem A.1].

Finally, we will need two one-variable Hardy-Littlewood maximal functions in the
plane, denoted by M1 and M2. Indeed, they will act on the first and second variable
respectively:

M1f(x, y) = sup
r>0

1

2r

∫ r

−r

|f(x− u, y)|du (3.6)

M2f(x, y) = sup
r>0

1

2r

∫ r

−r

|f(x, y − t)|dt. (3.7)

They are bounded on Lp(R2) for all 1 < p < ∞, and satisfy the following vector-valued
inequality, which follows easily by integrating a corresponding result of Fefferman and
Stein:

Theorem C. For 1 < p <∞ and i = 1, 2, we have
∥∥∥
(∑

k∈Z

|Mifk|
2
)1/2∥∥∥

p
.
∥∥∥
(∑

k∈Z

|fk|
2
)1/2∥∥∥

p
, (3.8)

with a constant depending only on p.

See e.g. [Ste93, Chapter II §1.1] for further details.

4. The asymmetric case: Theorem 1.1

First we prove Theorem 1.1, assuming Lemma 2.1; then in Section 4.3 we prove the
lemma.

For convenience, we define the auxiliary variable z = z(x, y) to be understood as
indicating either z(x, y) = x or z(x, y) = y, so that N(z) can mean either N(x) or N(y).
To simplify notations, we also define

Tf(x, y) = Hm,d
N(z)f(x, y), (4.1)

8



with m, d satisfying the conditions of Theorem 1.1. With ψℓ as defined in Section 3.2,
define for each ℓ ∈ Z

Tℓf(x, y) =

∫

R

f(x− t, y − tm)eiN(z)tdψℓ(t)
dt

t
.

Let n : R → Z be such that for all z ∈ R,

2−n(z)d ≤ |N(z)| < 2−(n(z)−1)d. (4.2)

Then we decompose T = T (1) + T (2) with

T (1)f(x, y) =
∑

ℓ≤n(z)

Tℓf(x, y)

and

T (2)f(x, y) =
∑

ℓ>0

Tn(z)+ℓf(x, y).

The motivation for this decomposition is that when ℓ ≤ n(z), ψℓ(t) localizes to |t| ≤

2ℓ+1 ≤ 2n(z)+1 and the exponential factor eiN(z)td is well approximated by 1. Consequently
we write T (1)f(x, y) as

∑

ℓ≤n(z)

∫

R

f(x− t, y − tm)(eiN(z)td − 1)ψℓ(t)
dt

t
+
∑

ℓ≤n(z)

∫

R

f(x− t, y − tm)ψℓ(t)
dt

t
. (4.3)

We may estimate the absolute value of the first summand brutally by applying (4.2):

.
∑

ℓ≤n(z)

∫

R

|f(x− t, y − tm)| · |N(z)td−1ψℓ(t)|dt .
1

2n(z)+2

2n(z)+1∫

−2n(z)+1

|f(x− t, y − tm)|dt.

The right hand side is bounded by M f(x, y), where M denotes the maximal operator
along (t, tm) defined in (3.4).

The second summand in (4.3) is bounded in absolute value by the maximal truncated
Hilbert transform along the curve (t, tm), defined by

H∗f(x, y) = sup
ε,R>0

∣∣∣
∫

ε<|t|<R

f(x− t, y − tm)
dt

t

∣∣∣, (4.4)

plus an error term bounded by M f(x, y) (which arises at the endpoint when passing
from smooth bump functions to a sharp truncation). Thus in total we have obtained the
pointwise estimate

|T (1)f | . M f +H∗f.

Since both H∗, M are known to be bounded in Lp, 1 < p < ∞ (for example, by slight
modifications of Stein and Wainger’s work for (t, t2) in [SW78]), we may conclude that

‖T (1)f‖p . ‖f‖p

for all 1 < p <∞.
It remains to show the same for T (2). Let

Sℓf(x, y) = Tn(z)+ℓf(x, y);

we claim that it suffices to prove there exists some γ0 > 0 such that for all ℓ > 0,

‖Sℓf‖2 . 2−γ0ℓ‖f‖2. (4.5)

9



Indeed, the triangle inequality implies the pointwise estimate |Sℓf | . M f , so that we
immediately obtain ‖Sℓf‖p . ‖f‖p for all 1 < p < ∞; by interpolation with (4.5) we
then obtain for any 1 < p <∞ there exists some γp > 0 such that

‖Sℓf‖p . 2−γpℓ‖f‖p.

Finally, summing over ℓ ≥ 0 gives

‖T (2)f‖p . ‖f‖p.

All that remains is to prove (4.5); we proceed by distinguishing two cases.

4.1. The Bm,d
N operators. Here we consider the case z(x, y) = y. Applying Plancherel’s

theorem in the free x-variable, we obtain

‖Sℓf(x, y)‖L2(dx) = (2π)−1/2
∥∥∥
∫

R

gξ(y − tm)eiN(y)td−iξtψn(y)+ℓ(t)
dt

t

∥∥∥
L2(dξ)

,

where

gξ(y) =

∫

R

e−iξxf(x, y)dx.

Therefore to prove (4.5) it will suffice to prove a bound of the form
∥∥∥
∫

R

F (y − tm)eiN(y)td−iξtψn(y)+ℓ(t)
dt

t

∥∥∥
L2(dy)

. 2−γ0ℓ‖F‖2,

uniformly in ξ ∈ R, for all single variable functions F . Recall that the cutoff function
ψn(y)+ℓ has supports both in the positive half line and in the negative half line. Accord-
ingly let us split the integration over t into a positive and a negative part. We consider the
positive part; the negative component is treated in an entirely analogous way. Changing
variables tm 7→ t, we see that it suffices to show there exists some γ0 > 0 such that for
all ℓ > 0 and all F ∈ L2(R),

∥∥∥
∞∫

0

F (y − t)eiN(y)td/m−iξt1/mψn(y)+ℓ(t
1/m)

dt

t

∥∥∥
L2(dy)

. 2−γ0ℓ‖F‖2, (4.6)

uniformly in ξ. In fact (4.6) is an immediate consequence of the key Lemma 2.1, with
α = d/m, β = 1/m. To see this, we first re-write N(y) = 2−n(y)d+r(y)d with 0 < r(y) < 1
for all y. Then for a ∈ R and λ ∈ R

2, we define Φλ
a := a−1Φλ(t/a), where

Φλ(t) := eiλ1tα+iλ2tβψ(t1/m)t−1 for t > 0,

and Φλ(t) = 0 for t ≤ 0. One then observes that the integral on the left hand side of
(4.6) is equal to F ∗ Φλ

a(y), with parameters

a = 2(n(y)+ℓ)m, λ1 = 2ℓd+r(y)d, λ2 = −ξ2n(y)+ℓ.

Then (recalling ℓ > 0, 0 < r(y) < 1), we have

|λ| = |λ1|+ |λ2| ≥ 2ℓd+r(y)d ≥ 2ℓd,

and we see from Lemma 2.1 that for any fixed ℓ > 0,

∥∥∥
∞∫

0

F (y − t)eiN(y)td/m−iξt1/mψn(y)+ℓ(t
1/m)

dt

t

∥∥∥
L2(dy)

. ‖ sup
a>0,|λ|≥2ℓd

|F ∗ Φλ
a |‖2 . 2−γ0ℓ‖F‖2,

as desired. This proves (4.6) and hence (4.5) in this case.
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4.2. The Am,d
N operators. Here we treat the case z(x, y) = x. Applying Plancherel’s

theorem in the free y-variable, we obtain
∥∥∥Sℓf(x, y)

∥∥∥
L2(dy)

= (2π)−1/2
∥∥∥
∫

R

gη(x− t)eiN(x)td−iηtmψn(x)+ℓ(t)
dt

t

∥∥∥
L2(dη)

with

gη(x) =

∫

R

e−iηyf(x, y)dy.

By Plancherel’s theorem it suffices to show that there exists γ0 > 0 such that for each
ℓ > 0, ∥∥∥

∫

R

F (x− t)eiN(x)td−iηtmψn(x)+ℓ(t)
dt

t

∥∥∥
L2(dx)

. 2−γ0ℓ‖F‖2

uniformly in η. Now it is clear that we may proceed similarly to (4.6), and deduce this
bound from Lemma 2.1 with α = d, β = m.

4.3. Proof of Lemma 2.1. In order to complete the proof of Theorem 1.1, it remains to
prove Lemma 2.1. Due to a minor technical issue we will assume the pair {α, β} 6= {2, 3}
in the proof. However, this case is of course already covered by Stein and Wainger’s work
[SW01, Theorem 1].

In fact it suffices to prove there exists γ0 such that for all r ≥ 1,

‖ sup
a>0, r≤|λ|≤2r

|F ∗ Φλ
a |‖2 . r−γ0‖F‖2. (4.7)

For with this result in hand, we immediately obtain the desired result,

∥∥∥ sup
a>0, |λ|≥r

|F ∗ Φλ
a |
∥∥∥
2
≤

∞∑

k=0

∥∥∥ sup
a>0, 2kr≤|λ|≤2k+1r

|F ∗ Φλ
a |
∥∥∥
2
. r−γ0‖F‖2.

We proceed by linearizing the supremum. For measurable functions a : R → (0,∞),
λ : R → R

2 with r ≤ |λ(u)| ≤ 2r for all u ∈ R, we define an operator Λ : L2(R) → L2(R)
by

ΛF (u) = F ∗ Φ
λ(u)
a(u)(u) =

∫

R

F (t)Φ
λ(u)
a(u)(u− t)dt.

The bound (4.7) will follow from proving ‖Λ‖2→2 . r−γ0 for some γ0 > 0 with the implicit

constant independent of a, λ. Since ‖Λ‖2→2 = ‖ΛΛ∗‖
1/2
2→2, we will in fact prove

‖ΛΛ∗‖2→2 . r−2γ0 . (4.8)

We calculate

ΛΛ∗F (u) =

∫

R

F (s)(Φν
a1
∗ Φ̃µ

a2
)(u− s)ds, (4.9)

with Φ̃(u) := Φ(−u) and ν = λ(u), µ = λ(s), a1 = a(u), a2 = a(s). Note that by rescaling
we may write

(Φν
a1
∗ Φ̃µ

a2
)(s) = a−1

2 (Φν
a1/a2

∗ Φ̃µ
1 )(a

−1
2 s) = a−1

1 (Φν
1 ∗ Φ̃

µ
a2/a1

)(a−1
1 s).

Thus we will deduce (4.8) from applying the following bounds, which are the heart of the
proof:
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Lemma 4.1. There exists γ1 > 0 such that for 0 < h ≤ 1, r ≤ |ν|, |λ| ≤ 2r we have

|(Φν
h ∗ Φ̃

µ
1 )(s)| . r−γ11{|s|≤4}(s) + 1{|s|≤r−γ1}(s), (4.10)

|(Φν
1 ∗ Φ̃

µ
h)(s)| . r−γ11{|s|≤4}(s) + 1{|s|≤r−γ1}(s). (4.11)

Remark 4.2. Note that the exceptional sets in (4.10), (4.11) do not depend on ν, µ. This
is in contrast to [SW01, Lemma 4.1]. As a consequence we do not require Stein and
Wainger’s small set maximal function [SW01, Proposition 3.1].

We first proceed with the proof of Lemma 2.1, and then prove Lemma 4.1 in Section
4.4. Applying (4.10) and (4.11) appropriately (depending on whether a1 ≥ a2 or a1 ≤ a2),
we deduce

|(Φν
a1
∗ Φ̃µ

a2
)(s)| . r−γ1

2∑

k=1

(
a−1
k 1{|s|≤4ak}(s) + (akr

−γ1)−11{|s|≤r−γ1ak}(s)
)
.

Thus for any G ∈ L2 we may compute

|〈ΛΛ∗F,G〉| =
∣∣∣
∫

R

∫

R

(Φν
a1 ∗ Φ̃

µ
a2)(u− s)F (s)G(u)dsdu

∣∣∣

. r−γ1

(∫

R

MF (u)|G(u)|du+

∫

R

|F (s)|MG(s)ds

)
,

in whichM denotes the standard one-variable Hardy-Littlewood maximal function. (Here
the important point is that we have integrated first in whichever variable was independent
of the stopping-time ak, for the two terms k = 1, 2.) Via the Cauchy-Schwarz inequality
and the boundedness of M on L2, we obtain

|〈ΛΛ∗F,G〉| . r−γ1‖F‖2‖G‖2.

This completes the proof of (4.7) with γ0 = γ1/2.

4.4. Proof of Lemma 4.1. We will only prove (4.10), as (4.11) follows by symmetry.
By definition,

(Φν
h ∗ Φ̃

µ
1 )(s) =

∫

R

eiν1t
α+iν2tβ−iµ1(ht−s)α−iµ2(ht−s)β ψ(t)

t

ψ(ht− s)

ht− s
dt. (4.12)

First notice that the support of Φν
h ∗ Φ̃

µ
1 (s) is contained in {s : |s| ≤ 4}.

In order to apply van der Corput estimates, we need to analyze when the phase function

Q(t, s) = ν1t
α + ν2t

β − µ1(ht− s)α − µ2(ht− s)β

has a large derivative of some order. Here we recall that νi = λi(u) are fixed with respect
to t, s (the relevant variables of integration in (4.9)), and that r ≤ |ν1| + |ν2| ≤ 2r. On
the other hand, µi = λi(s) depends on s (in an unknown way), and thus our strategy is
to make our argument independent of µ1, µ2.

Case 1: Suppose that 0 < h ≤ h0, where 0 < h0 < 1 is to be determined later,
depending on r, α, β; this is the easier case.

Let 0 < ε1 < 1 be small and fixed. Within the support of ψ(t)ψ(ht− s), we estimate

|∂tQ(t, s)| ≥ |αν1t
α−1 + βν2t

β−1| − hCr,

where C is a positive constant only depending on the exponents α, β. Let us define the
function

F (t) = αν1t
α−1 + βν2t

β−1,
12



and its associated exceptional set

E = {t ∈ [1/2, 2] : |F (t)| ≤ τr1−ε1},

where τ is a positive constant that depends only on α, β and is to be determined later.
Our strategy will be to choose τ so that |E| is small and then apply van der Corput’s
lemma outside of E.

We will prove (at the end of the considerations for Case 1):

Lemma 4.3. There exists a choice of τ (depending only on α, β) such that

|E| . r−ε2 (4.13)

with ε2 = ε1/|β − α|.

Assuming τ is chosen as in the lemma, we now specify h0 to be such that

h0C =
1

2
τr−ε1. (4.14)

Then whenever h ≤ h0, for all t ∈ [1/2, 2] \ E,

|∂tQ(t, s)| & r1−ε1 . (4.15)

We now split the integral in (4.12) according to whether t ∈ [1/2, 2] \ E or t ∈ E. We
estimate the portion of the integral over E trivially by the measure of E, which is small
. r−ε2 by Lemma 4.3.

We will estimate the portion of the integral over [1/2, 2] \ E by applying van der
Corput’s lemma combined with the lower bound (4.15).

Here we encounter a delicate point: as stated in [Ste93, Chapter VIII §1.2] van der Cor-
put’s lemma for a first derivative assumes monotonicity. We circumvent this assumption
as follows. We first note that E (and thus also [1/2, 2]\E) is a finite union of intervals,
with the number of intervals being bounded by a small absolute constant. To see this
note that the equation

αν1t
α−1 + βν2t

β−1 ± τr1−ε1 = 0

has at most 3 solutions in t > 0 (see for example [SW70, Lemma 3]).
Thus we may apply the following slight variant of van der Corput’s lemma (proved at

the end of Case 1) to each such interval:

Lemma 4.4. Suppose φ is real-valued and smooth in (a, b) and that both |φ′(x)| ≥ σ1
and |φ′′(x)| ≤ σ2 for all t ∈ (a, b). Then

∣∣∣∣
∫ b

a

eiλφ(t)dt

∣∣∣∣ ≤ (a− b)

(
σ2
σ2
1

)
λ−1.

Here we note that for s fixed, we have that Q(t, s) is C∞ with respect to t for all t

in the support of ψ(t)ψ(ht− s); in particular note that both t, ht− s are bounded away
from the origin. We also verify trivially that for all such t,

|∂2tQ(t, s)| . r, (4.16)

with a constant depending only on α, β. Hence applying Lemma 4.4 with the bounds
(4.15) and (4.16) to each of the finitely many finite-length intervals in [1/2, 2] \ E, we
obtain for each such portion of the integral a bound of size . r(r1−ε1)−2 = r−(1−2ε1). In
total, combining this with our trivial estimate for the portion of the integral over E, we
have proved

|(Φν
h ∗ Φ̃

µ
1 )(s)| . r−(1−2ε1) + r−ε2 . r−ε3,
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for all |s| ≤ 4, for a suitable ε3 > 0, which suffices for (4.10) in this case. All that remains
is to verify Lemmas 4.3 and 4.4.

Proof of Lemma 4.3. We observe that if one of |ν1|, |ν2| dominates the other then |F (t)|
is large, that is |F (t)| & r. More precisely, recall that |ν1| + |ν2| ≈ r, and suppose that
|ν2|/|ν1| ≤ c0 for some small constant c0 (so in particular |ν1| & r). Then

|F (t)| = |ν1|

∣∣∣∣αtα−1 + β
ν2
ν1
tβ−1

∣∣∣∣ ;

if c0 is chosen sufficiently small (with respect to α, β) we may guarantee that for all
t ∈ [1/2, 2],

αtα−1 ≥ 2

∣∣∣∣β
ν2
ν1
tβ−1

∣∣∣∣
and hence

|F (t)| ≥ |ν1|
α

2
tα−1 ≥ c1r,

say. We may argue similarly to obtain |F (t)| ≥ c′1r if |ν1|/|ν2| ≤ c′0 where c′0 depends
only on α, β.

By choosing τ < min{c0, c
′
0} (hence depending only on α, β) we then see that if E is to

be non-empty, we must be in the regime where c−1
0 ≤ |ν1|/|ν2| ≤ c′0, that is, |ν1| ≈ |ν2|.

In this case, we will deduce that (4.13) holds. Suppose that α < β; write c := ν2/ν1 so
that |c| ∈ [c−1

0 , c′0]. Then

F (t) = αν1t
α−1(1 + c(β/α)tβ−α),

so that for all t ∈ E we must have

r|1 + c(β/α)tβ−α| ≤ |F (t)| ≤ τr1−ε1 ,

that is, t must satisfy

|1 + c(β/α)tβ−α| ≤ τr−ε1 .

The measure of such t is . r−ε1/(β−α), with an implicit constant dependent on α, β. For
the case α > β we argue in an entirely analogous way. This proves Lemma 4.3. �

Proof of Lemma 4.4. We recall the proof of the original van der Corput lemma in the
case of a first derivative [Ste93, Ch VIII, Proposition 2], which bounds the integral in
question by

λ−1

∫ b

a

∣∣∣∣
d

dt

(
1

φ′

)∣∣∣∣ dt = λ−1

∫ b

a

∣∣∣∣
φ′′(t)

φ′(t)2

∣∣∣∣ dt,

where we have evaluated the derivative rather than invoking monotonicity of φ′ to bring
the absolute values outside the integral. The inequality claimed in Lemma 4.4 then clearly
follows. �

We have now concluded the proof of Lemma 4.1 in Case 1.
Case 2. In the remaining case, h0 ≤ h ≤ 1. Fix any small 0 < ε4 < 1; if |s| ≤ r−ε4

we use the triangle inequality to bound (4.12) trivially by 1, which is sufficient for the
second term in (4.10). Thus from now on we assume that

|s| ≥ r−ε4 (4.17)
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and work to obtain a small bound for the integral. Note that as a vector,



∂tQ(t, s)
∂2tQ(t, s)
∂3tQ(t, s)
∂4tQ(t, s)


 =Mt,s




αν1t
α−1

−αµ1(ht− s)α−1

βν2t
β−1

−βµ2(ht− s)β−1


 , (4.18)

where Mt,s is the 4× 4 matrix

Mt,s =




1 h 1 h
a1t

−1 a1h
2(ht− s)−1 b1t

−1 b1h
2(ht− s)−1

a2t
−2 a2h

3(ht− s)−2 b2t
−2 b2h

3(ht− s)−2

a3t
−3 a3h

4(ht− s)−3 b3t
−3 b3h

4(ht− s)−3


 , (4.19)

and

a1 = α− 1, a2 = (α− 1)(α− 2), a3 = (α− 1)(α− 2)(α− 3),

b1 = β − 1, b2 = (β − 1)(β − 2), b3 = (β − 1)(β − 2)(β − 3).

If we can show that | detMt,s| is sufficiently large, that is

| detMt,s| & r−κ (4.20)

for some κ > 0, then we will apply the following lemma (whose proof we defer to the end
of the section):

Lemma 4.5. Let A be an invertible n× n matrix and x ∈ R
n. Then

|Ax| ≥ | detA|‖A‖1−n|x|,

where ‖A‖ denotes the matrix norm sup|x|=1 |Ax|.

Note that ‖Mt,s‖ . 1 (since we only consider t in the support of ψ(t)ψ(ht− s), so that
both t, ht−s are bounded away from the origin). If we have shown (4.20) for t in a certain
interval, then applying Lemma 4.5 to (4.18), we see that throughout that interval,

(
4∑

k=1

|∂ktQ(t, s)|
2

)1/2

& r−κ|(ν1, ν2, µ1, µ2)
T | & r1−κ. (4.21)

Then applying the van der Corput lemma to that portion of the integral (4.12) shows
that portion is bounded by r−(1−κ)/4. (Note: to be precise, if only the first order term
|∂tQ(t, s)| dominates in (4.21), then we must apply the variant Lemma 4.4 of the van der
Corput lemma, using the trivial upper bound |∂2tQ(t, s)| . r, similar to our argument in
Case 1. This will result in a bound for the portion of the integral over that interval of
size . r−(1−2κ), which is sufficient.)

In fact, we will show that | detMt,s| is sufficiently large in this manner for all but a
small exceptional set E of t, with measure . r−κ′

for some small κ′ > 0. (As in our
argument in Case 1, we will also note that this exceptional set is a union of a finite
number of intervals, dependent only on α, β, so that we may apply the above argument
to each individual component of [1/2, 2] \E.) Thus this strategy is sufficient to complete
the proof of (4.10).

We require the following purely algebraic identity.
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Lemma 4.6. Let a0, . . . , a3, b0, . . . , b3, x, y be arbitrary real numbers. Then
∣∣∣∣∣∣∣∣

a0 a0 b0 b0
a1x a1y b1x b1y
a2x

2 a2y
2 b2x

2 b2y
2

a3x
3 a3y

3 b3x
3 b3y

3

∣∣∣∣∣∣∣∣
= (c(x2 + y2) + dxy)(x− y)2xy,

where c, d are given by

c = −

∣∣∣∣
a0 b0
a1 b1

∣∣∣∣ ·
∣∣∣∣
a2 b2
a3 b3

∣∣∣∣ , d = c+

∣∣∣∣
a0 b0
a3 b3

∣∣∣∣ ·
∣∣∣∣
a1 b1
a2 b2

∣∣∣∣ . (4.22)

Proof. Expand the determinant along the first row, combine the terms corresponding to
the first and second columns, and those corresponding to the third and fourth columns,
respectively. Then again expand each of the two resulting 3 × 3 determinants along the
first row. �

Let M̃ denote the matrix in Lemma 4.6. Rescaling the individual rows and columns
of Mt,s appropriately to clear denominators, we see that

detMt,s = h2t−6(ht− s)−6 det M̃

where within M̃ we set a0 = b0 = 1, x = ht− s and y = ht. Then we may apply Lemma
4.6 to compute

detMt,s = t−5(ht− s)−5s2h3S(t), (4.23)

with

S(t) = h2(2c+ d)t2 − h(2c+ d)st+ cs2,

in which c, d are as in (4.22). Note that with a0 = b0 = 1 and the other ai, bi as specified
above, then c 6= 0 is equivalent to α 6= β, α, β 6= 1, 2.

In order to now verify that | detMt,s| is sufficiently large, as in (4.20), we distinguish
between two cases.

Case 2A. Suppose first that 2c + d = 0, so that S(t) = cs2. We must then verify that
c 6= 0. Since 2c + d = 0, clearly if c = 0 then d = 0. But recall from above that c = 0
implies that either α = 2 or β = 2 (since the hypotheses of Lemma 2.1 already ruled out
α = β, α = 1 or β = 1). Recall also that we assume in this stage of the proof that the
pair (α, β) is not (2, 3).

Suppose that α = 2. Then we would have d = (β− 1)2(β − 2)2(β − 3)(α− 1), which is
clearly non-zero (since β 6= 3). Analogously we see that β = 2 leads to a contradiction.
Thus we may conclude that c 6= 0, and recalling |s| ≥ r−ε4 from (4.17) and h ≥ h0 & r−ε1

from (4.14), we may compute immediately from (4.23) that

| detMt,s| & r−4ε4−3ε1,

holds for all t ∈ [1/2, 2]. This verifies (4.20) and allows us to apply the van der Corput
lemma to bound the full integral (4.12) by r−κ for some κ > 0, completing the proof of
(4.10) in this case.

Case 2B. The final case we must consider is when 2c+d 6= 0. Fix any small 0 < ε5 < 1
and define

E = {t ∈ [1/2, 2] : |S(t)| ≤ r−2ε5−2ε1}.

Note first that E is a union of at most two intervals, since S is a quadratic polynomial.
Then for t ∈ [1/2, 2] \ E, (4.23) in combination with |s| ≥ r−ε4, h & r−ε1 implies

| detMt,s| & r−2ε4−5ε1−2ε5 ,
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verifying (4.20) so that we may apply the van der Corput lemma to bound the portion
of the integral over [1/2, 2] \E by . r−κ for some κ > 0, which suffices for the first term
in (4.10).

We will bound the portion of the integral over E trivially, so all that remains is to
verify that E has small measure, for which we call upon the following lemma (see Christ
[Chr85, Lemma 3.3]):

Lemma 4.7. Let I ⊂ R be an interval, k ∈ N, f ∈ Ck(I), and suppose that for some
σ > 0, |f (k)(x)| ≥ σ for all x ∈ I. Then there exists a constant 0 < C < ∞ depending
only on k such that for every ρ > 0,

|{x ∈ I : |f(x)| ≤ ρ}| ≤ C
(ρ
σ

)1/k
. (4.24)

By the choice of h0 in (4.14) we have

|S ′′(t)| & h2 & h20 & r−2ε1.

Thus by Lemma 4.7, we have |E| . r−ε5, which suffices for the second term in (4.10).
All that remains to complete the proof of Lemma 4.1, and hence of the main Lemma

2.1, is to verify Lemma 4.5.

Proof of Lemma 4.5. First we show ‖A−1‖ ≤ ‖A‖n−1/| detA|. By homogeneity we can
assume ‖A‖ = 1. Then all the eigenvalues of AA∗ are between 0 and 1. Let λ be the
smallest eigenvalue of AA∗. Then ‖A−1‖ = λ−1/2 ≤ det(AA∗)−1/2 = | detA|−1. Therefore
in general,

|x| = |A−1Ax| ≤ ‖A−1‖ · |Ax| ≤ ‖A‖n−1| detA|−1|Ax|,

as desired. �

5. The symmetric case: Theorem 1.2

Here we prove Theorem 1.2. We present the proof in detail only for Bm,m; thus in the
following we write T = Bm,m. The proof for Am,1 is, mutatis mutandi, analogous, and
we merely sketch the necessary changes in Section 5.3.

Recalling the function ψk fixed in Section 3.2, we define the Littlewood-Paley projection
in the free x-variable by

fk(x, y) = Pkf(x, y) =

∫

R

f(u, y)ψ̌k(x− u)du, (5.1)

where ψ̌k denotes the inverse Fourier transform of the function ψk. In particular, note
that TPk = PkT .

5.1. Single annulus estimate. We fix k0 ∈ Z and split the operator as T = T
(1)
k0

+T
(2)
k0

,

where for any fixed k, T
(1)
k is defined as

T
(1)
k f(x, y) := p.v.

∫

|t|≤2−k

f(x− t, y − tm)eiN(y)tm dt

t

and T
(2)
k := T − T

(1)
k accordingly.

Our key estimate for T
(1)
k0

is the pointwise bound:

|T
(1)
k0
Pk0f(x, y)| . C

∗Pk0f(x, y) +M1M2Pk0f(x, y), (5.2)

in which the maximally truncated one-variable Carleson operator C ∗ is defined as in
(3.2); here our understanding is that C ∗ acts only on the second variable. Also, M1
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and M2 refer to the Hardy-Littlewood maximal function in the first and second variable
respectively, as defined in (3.6), (3.7).

We will prove (5.2) by using the fact that under the single annulus assumption

f = Pk0f, (5.3)

the function f(x− t, y − tm) is well approximated by f(x, y − tm). Precisely, we assume
(5.3) and estimate

|T
(1)
k0
f(x, y)| ≤ I+ II,

where

I =

∫

|t|≤2−k0

|f(x− t, y − tm)− f(x, y − tm)|
dt

|t|
, (5.4)

II =
∣∣∣p.v.

∫

|t|≤2−k0

f(x, y − tm)eiN(y)tm dt

t

∣∣∣. (5.5)

At this point there is a striking dichotomy in our treatment, depending on the parity
of m: if m is even, the term II vanishes identically due to the integrand being an odd
function. On the other hand, if m is odd, we can change variables tm 7→ t (appropriately
in the cases t > 0, t < 0) to see

II . sup
ε>0

∣∣∣p.v.
∫

|t|≤ε

f(x, y − t)eiN(y)t dt

t

∣∣∣ ≤ C
∗f(x, y), (5.6)

in which the maximally truncated Carleson operator acts only on the second variable.
This contributes the first term in (5.2).

Next, we note that the first term I can be estimated by a maximal function due to the
single annulus assumption (5.3). We write

f(x− t, y − tm)− f(x, y − tm) =

∫

R

f(x− u, y − tm)(ψ̌k0(u− t)− ψ̌k0(u))du. (5.7)

By the rapid decay of the first derivative of ψ̌ we certainly have

|
d

dξ
(ψk0 )̌ | = |

d

dξ
(2k0ψ̌(2k0ξ))| ≤ 22k0(1 + |2k0ξ|)−2. (5.8)

Now suppose that for some j ≥ 0, u is in the annulus

2−k0+j−1 ≤ |u| ≤ 2−k0+j , (5.9)

so that for |t| ≤ 2−k0 we have both 2−k0+j−2 ≤ |u|, |u− t| ≤ 2−k0+j+1. Thus applying the
mean value theorem and the decay (5.8), for u in the annulus (5.9) we have

|ψ̌k0(u− t)− ψ̌k0(u)| . |t| · 22(k0−j),

where the implicit constant depends only on the choice of ψ.
Therefore (5.7) can be estimated in absolute value by

. |t|22k0
∞∑

j=0

2−2j

∫

|u|≤2−k0+j

|f(x− u, y − tm)|du. (5.10)

This allows us to bound the term I by

.

∞∑

j=0

2−j 1

2−k02−k0+j

∫

|u|≤2−k0+j

∫

|t|≤2−k0

|f(x− u, y − tm)|dtdu. (5.11)
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We may dominate this by the maximal functions M1 andM2 as follows. Indeed, we focus
temporarily on the inner integration in t in (5.11):

1

2−k0

∫

|t|≤2−k0

|f(x− u, y − tm)|dt ≤
C

2−k0

∫

|s|≤2−k0m

|f(x− u, y − s)||s|
1
m
−1ds

Since |s|
1
m
−11|s|≤2−k0m is radially decreasing and integrable in s, with integral equal to

C2−k0, by [Ste70, Chapter III Theorem 2], we can bound the above by . M2f(x− u, y).
Thus (5.11) is bounded by M1M2f(x, y). This completes the proof of the inequality (5.2)

for T
(1)
k0

.

We now turn to estimating T
(2)
k0
f , still under the single annulus assumption (5.3). Let

us define for any integer ℓ

Tℓf(x, y) =

∫

R

f(x− t, y − tm)eiN(y)tmψℓ(t)
dt

t
.

Then certainly

|T
(2)
k0
f | . M f +

∞∑

ℓ=0

|T−k0+ℓf |; (5.12)

here we need merely observe that the maximal operator M along (t, tm) (defined in (3.4))
arises in (5.12) due to the transition to smooth cutoffs.

Next, we claim that (still under the assumption (5.3)) there exists a constant γ > 0
such that for all ℓ ≥ 0,

‖T−k0+ℓf‖2 . 2−γℓ‖f‖2. (5.13)

To prove (5.13) we proceed similarly to Section 4.1. First we apply Plancherel’s theorem
in the free x-variable, so that it is equivalent to prove that for gξ(y) =

∫
R
e−iξxf(x, y)dx,

∥∥∥
∫

R

gξ(y − tm)eiN(y)tm−iξtψ−k0+ℓ(t)
dt

t

∥∥∥
L2(dξ,dy)

. 2−γℓ‖gξ‖L2(dξ,dy).

In particular, we note that due to the assumption (5.3), gξ is nonzero only in the frequency
annulus 2k0−1 ≤ |ξ| ≤ 2k0+1.

We then split the integral into a positive and negative part, which are dealt with
analogously. We focus here on the positive portion of the integral; by a change of variables
tm 7→ t the claim (5.13) is reduced to showing

∥∥∥
∞∫

0

F (y − t)eiN(y)t−iξt1/mψ−k0+ℓ(t
1/m)

dt

t

∥∥∥
L2(dy)

. 2−γℓ‖F‖L2(dy) (5.14)

for all single variable functions F , uniformly in 2k0−1 ≤ |ξ| ≤ 2k0+1.
As in the proof of Lemma 2.1 we proceed by the TT ∗ method. For convenience we

write
ψ̃k(t) = ψk(t

1/m)1(0,∞)(t),

and denote the operator on the left hand side of (5.14) by T̃ . Then ‖T̃‖2→2 = ‖T̃ T̃ ∗‖
1/2
2→2,

where

T̃ T̃ ∗F (y) =

∫

R

F (y − s)KN(y),N(y−s)(s)ds (5.15)

and for any λ1, λ2 ∈ R the kernel Kλ1,λ2 is given by

Kλ1,λ2(s) =

∫

R

eiλ1t−iλ2(t−s)−iξ(t1/m−(t−s)1/m) ψ̃−k0+ℓ(t− s)

t− s

ψ̃−k0+ℓ(t)

t
dt.
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Via the substitution t 7→ ρt with ρ = 2m(−k0+ℓ) we obtain

ρKλ1,λ2(ρs) =

∫

R

eiλ1ρt−iλ2ρ(t−s)−iξ2−k0+ℓ(t1/m−(t−s)1/m) ψ̃0(t− s)

t− s

ψ̃0(t)

t
dt.

We need to analyze the phase function

Q(t, s) = λ1ρt− λ2ρ(t− s) + η(t1/m − (t− s)1/m), (5.16)

where η = −ξ2−k0+ℓ, so in particular

2ℓ−1 ≤ |η| ≤ 2ℓ+1. (5.17)

On first sight this may not look promising, because the phase function includes linear
terms which tend to cause trouble (compare Stein and Wainger [SW01]). However, it
turns out that we are allowed to take derivatives to isolate the non-linear term (recall
m ≥ 2) because we know by (5.17) that its coefficient η is large. Taking two derivatives
with respect to t, we obtain

∂2tQ(t, s) = cη(tα − (t− s)α)

with α = 1
m
− 2 and c = 1

m
( 1
m
− 1). Suppose that |s| ≥ 2−ℓ/2. Then by the mean value

theorem and (5.17), |∂2tQ(t, s)| & 2ℓ/2 throughout the region of t and t − s considered

(depending only on the support of ψ̃0). In this case, an application of the second derivative
test shows that

|ρKλ1,λ2(ρs)| . 2−ℓ/4.

On the other hand, if |s| ≤ 2−ℓ/2 we merely use the triangle inequality for the trivial
estimate

|ρKλ1,λ2(ρs)| . 1.

Altogether we have proved, with ρ = 2m(−k0+ℓ),

|Kλ1,λ2(s)| . 2−ℓ/4ρ−11{|s|≤4ρ}(s) + ρ−11{|s|≤2−ℓ/2ρ}(s),

uniformly in λ1, λ2. Applying this in (5.15) allows us to deduce that

|T̃ T̃ ∗F (y)| . 2−ℓ/4MF (y), (5.18)

where MF denotes the standard one-variable Hardy-Littlewood maximal function. An
application of the L2 estimate for M now implies our claim (5.14) with γ = 1/8; by
Plancherel we then finally obtain (5.13).

5.2. Square function estimate. In this section we assemble the single annulus esti-
mates of the previous section to derive the Lp boundedness of our operator T = Bm,m.
This application of the Littlewood-Paley theory is in the spirit of Bateman and Thiele
[BT13].

In view of the relation TPk = PkT and the standard Littlewood-Paley inequalities, we
have

‖Tf‖p .
∥∥∥
(∑

k∈Z

|TPkf |
2

)1/2 ∥∥∥
p
.
∥∥∥
(∑

k∈Z

|T
(1)
k Pkf |

2

)1/2 ∥∥∥
p
+
∥∥∥
(∑

k∈Z

|T
(2)
k Pkf |

2

)1/2 ∥∥∥
p

In the term for T
(1)
k on the right hand side we apply the estimate (5.2); then by applying

the vector-valued estimates of Theorems A and C to the maximally truncated Carleson
operator and the one-variable maximal function, we obtain

∥∥∥
(∑

k∈Z

|T
(1)
k Pkf |

2

)1/2 ∥∥∥
p
.
∥∥∥
(∑

k∈Z

|Pkf |
2

)1/2 ∥∥∥
p
. ‖f‖p.
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For T
(2)
k , we recall that by (5.12)

|T
(2)
k Pkf | . MPkf +

∞∑

ℓ=0

|T−k+ℓPkf |,

so that by Minkowski’s inequality for integrals,

∥∥∥
(∑

k∈Z

|T
(2)
k Pkf |

2

)1/2 ∥∥∥
p
.
∥∥∥
(∑

k∈Z

|MPkf |
2

)1/2 ∥∥∥
p
+

∞∑

ℓ=0

∥∥∥
(∑

k∈Z

|T−k+ℓPkf |
2

)1/2 ∥∥∥
p
.

We may apply Theorem B to obtain a bound . ‖f‖p for the first term; for the second
term it would suffice to show that for each 1 < p < ∞ there exists γ > 0 such that for
every ℓ ≥ 0,

∥∥∥
(∑

k∈Z

|T−k+ℓPkf |
2

)1/2 ∥∥∥
p
. 2−γℓ

∥∥∥
(∑

k∈Z

|Pkf |
2

)1/2 ∥∥∥
p
. 2−γℓ‖f‖p. (5.19)

For p = 2 this follows from (5.13). But recall that we always have the simple estimate
|TℓPkf | . MPkf for all k, ℓ ∈ Z by the triangle inequality. Therefore Theorem B implies
a bound without decay, namely

∥∥∥
(∑

k∈Z

|T−k+ℓPkf |
2

)1/2 ∥∥∥
r
. ‖f‖r, (5.20)

valid for all 1 < r <∞. Now in general, (5.19) follows for all 1 < p <∞ by interpolating
between the L2 → L2(ℓ2) case of (5.19) and the Lr → Lr(ℓ2) bound (5.20) for the vector-
valued map f 7→ {T−k+ℓPkf}k∈Z. The proof of Theorem 1.2 is now complete.

5.3. Remarks on the proof for Am,1. As mentioned above, we will not repeat the
proof explicitly for Am,1, but merely complement the sketch already provided in Section
2.3 by pointing out two key modifications. Of course one interchanges the roles of the x
and y variables. In addition:

(1) The cancellation miracle for even m in the term II of (5.5) does not occur for Am,1.
Instead one always needs to invoke Carleson’s theorem in the form of Theorem
A, analogous to the computation already carried out for odd m in (5.6).

(2) In the treatment of Am,1, the restriction m 6= 2 originates because the relevant
phase function analogous to (5.16) is

Q(t, s) = λ1ρt− λ2ρ(t− s) + η(tm − (t− s)m).

Visibly, when m = 2, the phase function Q(t, s) is now linear in t, so that its
second derivative vanishes, and consequently we fail in this case to obtain a good
bound for the kernel.

6. Deductions for partial Carleson operators

6.1. L2 consequences of partial Carleson bounds. As stated in Section 1.3, the
L2 boundedness of Am,1

N , for any fixed integer m ≥ 1, implies the L2 boundedness of
Carleson’s operator (1.1). Similarly, the L2 boundedness of Bm,m

N , when m ≥ 1 is an odd
integer, implies the L2 boundedness of Carleson’s operator. (Of course, in the work of
this paper, our logic is actually the other way round: in proving Theorem 1.2, we used
Carleson’s theorem as a black box.)

We will see how to carry out these deductions from a more general argument we now
give in the context of the quadratic Carleson operator C par along the parabola (defined

21



in equation (1.14)). We prove that an inequality of the form (1.15) would imply the
analogue over R of Lie’s result [Lie09] on the one-variable quadratic Carleson operator
CQ:

Proposition 6.1. Assume the veracity of the estimate
∥∥∥
∫

ǫ≤|t|≤R

f(x− t, y − t2)eiN1(x)t+iN2(x)t2
dt

t

∥∥∥
L2(dxdy)

≤ C‖f‖2, (6.1)

for all Schwartz functions f , where N1, N2 : R → R are measurable functions, 0 < ǫ <
R are real parameters, and the constant C is independent of f,N1, N2, ǫ, R. Then the
operator

f 7→ CQf(x) := sup
N∈R2

∣∣∣p.v.
∫

R

f(x− t)eiN1t+iN2t2
dt

t

∣∣∣

is bounded on L2(R).

Note that in our assumed bound (6.1), the linearizing functions N1, N2 are independent
of y, so this is a far weaker assumption than the conjectured L2 bound for C par in (1.14).
In the argument that we will now give for (6.1), if we replace the curve (t, t2) by (t, tm) and
the phase by N1(x)t + N2(x)t

m, and furthermore specify that N2 is identically zero, we
may deduce Carleson’s original theorem from the partial bound for Am,1

N for any integer
m ≥ 1; or, if we specify N1 is identically zero, we may deduce Carleson’s original theorem
from the partial bound for Bm,m

N for m an odd integer. (When m is even, under the
specification N1 ≡ 0, the operator in (6.1) would vanish, due to the integrand being an
odd function.)

In general, to prove Proposition 6.1, we use an elementary tensor f(x, y) = h(x)g(y),
where h, g are real Schwartz functions, in which case (6.1) implies

∥∥∥
∫

ǫ≤|t|≤R

h(x− t)eiN1(x)t+iN2(x)t2g(y − t2)
dt

t

∥∥∥
L2(dxdy)

≤ C‖h‖2‖g‖2.

Applying Plancherel’s theorem in the y variable we obtain
∥∥∥
∫

ǫ≤|t|≤R

h(x− t)eiN1(x)t+iN2(x)t2 ĝ(η)e−iηt2 dt

t

∥∥∥
L2(dxdη)

≤ C‖h‖2‖g‖2. (6.2)

Suppose for the time being that we have chosen g such that we have an estimate of the
form

∥∥∥
∫

ǫ≤|t|≤R

h(x− t)eiN1(x)t+iN2(x)t2 ĝ(η)(e−iηt2 − 1)
dt

t

∥∥∥
L2(dxdη)

≤ C‖h‖2‖g‖2. (6.3)

We would deduce from (6.2) and (6.3) that
∥∥∥
∫

ǫ≤|t|≤R

h(x− t)eiN1(x)t+iN2(x)t2 ĝ(η)
dt

t

∥∥∥
L2(dxdη)

≤ C‖h‖2‖g‖2,

so that by Plancherel and Fubini,
∥∥∥
∫

ǫ≤|t|≤R

h(x− t)eiN1(x)t+iN2(x)t2
dt

t

∥∥∥
2
≤ C‖h‖2.

Via Fatou’s lemma this gives the L2 boundedness of the quadratic Carleson operator
h 7→ CQh, as claimed in Proposition 6.1.
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To obtain the estimate (6.3), we choose δ with 0 < δ < 1/R2 and specify that g be
a Schwartz function on R such that ĝ is supported on [−δ, δ] and ‖g‖2 > 0. Then by
Minkowski’s inequality and Fubini, the left hand side of (6.3) is bounded by

‖h‖2

∫

ǫ≤|t|≤R

‖ĝ(η)(e−iηt2 − 1)‖L2(dη)

dt

|t|
. (6.4)

The mean value theorem, followed by Plancherel, shows that for |t| ≤ R,
∫

R

∣∣∣ĝ(η)(e−iηt2 − 1)
∣∣∣
2

dη ≤ δ2t4‖g‖22.

This implies that (6.4) is no greater than

‖h‖2‖g‖2 · δ

∫

ǫ≤|t|≤R

|t|dt ≤ ‖h‖2‖g‖2, (6.5)

which completes the proof of (6.3), and hence Proposition 6.1.

6.2. L2 deductions for partial Carleson operators. Remark 1.3 stated that L2

bounds for A2,1
N , Am,m

N and Bm,1
N (with m > 1) follow from known Carleson theorems.

We briefly indicate these deductions, which are along the lines of arguments in Sections
4.1 and 4.2. By Plancherel’s theorem in the free y-variable,

‖Am,m
N f‖L2(dxdy) =

∥∥∥
∫

R

gη(x− t)ei(N(x)−η)tm dt

t

∥∥∥
L2(dxdη)

where gη(x) =
∫
R
e−iηyf(x, y)dy. Then an L2 bound of the form
∥∥∥
∫

R

gη(x− t)ei(N(x)−η)tm dt

t

∥∥∥
L2(dx)

. ‖gη‖L2(dx),

uniform in η, follows from Stein and Wainger [SW01] (since m > 1), and this suffices.
In the next case,

‖A2,1
N f‖L2(dxdy) =

∥∥∥
∫

R

gη(x− t)eiN(x)t−iηt2 dt

t

∥∥∥
L2(dxdη)

.

Observe that

iηt2 = iη(x− t)2 − iηx2 + 2iηxt.

Define Qηf(x) = eiηx
2
f(x) and set Ñ(x) = N(x)− 2ηx. Then,

∫

R

gη(x− t)eiN(x)t−iηt2 dt

t
= eiηx

2

∫

R

Q−ηgη(x− t)eiÑ(x)tdt

t
= QηHÑ(x)Q−ηgη(x),

where HNf(x) =
∫
R
f(x− t)eiNt dt

t
. Since Qη is an isometry in L2, our claim follows from

the L2 bound for the Carleson operator.
In the final case, by Plancherel’s theorem in the free x-variable,

‖Bm,1
N f‖L2(dxdy) =

∥∥∥
∫

R

gξ(x− tm)ei(N(x)−η)t dt

t

∥∥∥
L2(dξdy)

where gξ(x) =
∫
R
e−iξxf(x, y)dx. Thus the required L2 bound follows from sending t 7→

t1/m and applying Guo [Guo15] to the resulting operator, which has one fractional mono-
mial in the phase.
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7. Appendix: Proof of vector-valued inequalities

7.1. Proof of Theorem A. We assemble results from the Grafakos texts [Gra14a],
[Gra14b]. By [Gra14b, Lemma 6.3.2], there is a positive constant c > 0 such that for any
1 ≤ p <∞, for all f ∈ Lp(R) we have the pointwise inequality

C
∗f ≤ cMf +M(C f), (7.1)

in which M is the standard one-dimensional Hardy-Littlewood maximal function. Since
the vector-valued Lp(ℓ2) inequality analogous to (3.3) is known to hold for the Hardy-
Littlewood maximal function (see e.g. [Ste93, Chapter II §1.1]), the problem is then
reduced to proving the analogue of (3.3) for the Carleson operator C . In fact, this is a
special case of [Gra14b, Exercise 6.3.4], which claims that for all 1 < p, r < ∞ and all
weights w ∈ Ap,

∥∥∥
(∑

k

|C fk|
r

)1/r ∥∥∥
Lp(w)

≤ Cp,r(w)
∥∥∥
(∑

k

|fk|
r

)1/r ∥∥∥
Lp(w)

(7.2)

for all sequences of functions fk ∈ Lp(w). This inequality may be verified, following
Grafakos, by the method of extrapolation. We need only note that [Gra14b, Theorem
6.3.3] provides a weighted estimate

‖C f‖Lp(w) ≤ C(p, [w]Ap)‖f‖Lp(w), (7.3)

for every 1 < p <∞ and w ∈ Ap. This is sufficient to prove (7.2) for all the stated values
of r, p by applying the vector-valued extrapolation result [Gra14a, Corollary 7.5.7]. (Here
we remark on the detail that Corollary 7.5.7, to which we appeal, requires that C(p, [w]Ap)
be an increasing function in [w]Ap. We can insure this is the case if we have the statement,
slightly stronger than (7.3), that for every B > 0 there exists a constant Cp(B) such that
for all w ∈ Ap with [w]Ap ≤ B we have ‖C f‖Lp(w) ≤ Cp(B)‖f‖Lp(w); such a statement is
verified by the explicit version of (7.3) given by Lerner and Di Plinio [DPL14, Theorem
1.1].)

Alternatively, once one has the pointwise inequality (7.1) and has consequently reduced
matters to proving an Lp(ℓ2) vector-valued inequality for C , one can turn to the original
result [RdFRT86] in the Lp(ℓ2) case, or the recent streamlined proof [DS15, Theorem
7.1].

7.2. Proof of Theorem B. We recall that the scalar-valued Lp-bound for M was ob-
tained by comparing it to a square function [Ste93, Chapter XI §1.2]. Indeed, let χ(t) be
a non-negative smooth function with compact support on the interval [−2, 2], such that
χ(t) ≡ 1 on [−1, 1]. For k ∈ Z, let χk(t) = 2−kχ(2−kt), dµk(x, y) = δy=xmχk(x), and

Akf(x, y) = f ∗ dµk(x, y) =

∫

R

f(x− t, y − tm)χk(t)dt.

Also let φ(x, y) be a smooth function with compact support on the unit ball in R
2,

normalized such that ∫

R2

φ(x, y)dxdy =

∫

R

χ(t)dt.

For k ∈ Z, let φk(x, y) = 2−(m+1)kφ(2−kx, 2−mky), and

Bkf(x, y) = f ∗ φk(x, y) =

∫

R2

f(x− u, y − v)φk(u, v)dudv.
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Then for non-negative functions f , we have the pointwise inequality

M f ≤ sup
k∈Z

Bkf + Sf, (7.4)

where S is the following square function:

Sf :=

(∑

k∈Z

|Akf − Bkf |
2

)1/2

. (7.5)

Now supk∈ZBkf is bounded by the standard maximal function associated to non-isotropic
‘squares’ of sizes R × Rm on R

2. It is known that a vector-valued estimate holds for
the maximal function associated to these non-isotropic squares; that is an analogue of
Theorem C. Thus the inequality (3.5) of Theorem B holds for 1 < p < ∞ if we have
supk∈ZBk in place of M on the left-hand side. Hence to prove the desired form of (3.5),
all we need to do is to establish

∥∥∥∥∥∥

(∑

ℓ∈Z

|Sfℓ|
2

)1/2
∥∥∥∥∥∥
Lp

.p

∥∥∥∥∥∥

(∑

ℓ∈Z

|fℓ|
2

)1/2
∥∥∥∥∥∥
Lp

(7.6)

where S is defined by (7.5), and 1 < p <∞.
The following scalar-valued inequality for 1 < p <∞ is already known [Ste93, Section

4, Theorem 11]:

‖Sf‖Lp .p ‖f‖Lp. (7.7)

But to deduce (7.6) we will instead use a related scalar-valued inequality for a signed
operator. For ǫk a random sequence of signs ±1, define

Tf :=
∑

k∈Z

ǫk(Akf −Bkf).

It is known that

‖Tf‖Lp .p ‖f‖Lp (7.8)

for all 1 < p < ∞, independent of the signs ǫk. At the end of this section, we briefly
recall a proof of this, for which one uses crucially the non-vanishing of the curvature of
the curve (t, tm), but we first deduce (7.6) from (7.8).

To do so, note that since T is linear, the Marcinkiewicz-Zygmund theorem implies that

‖ |Tfℓ|ℓ2 ‖Lp .p ‖ |fℓ|ℓ2 ‖Lp

for 1 < p <∞, i.e.
∥∥∥∥∥∥

∣∣∣∣∣
∑

k∈Z

ǫk(Akfℓ − Bkfℓ)

∣∣∣∣∣
ℓ2(dℓ)

∥∥∥∥∥∥
Lp

.p ‖ |fℓ|ℓ2 ‖Lp.

(We write ℓ2(dℓ) to emphasize that the ℓ2 norm is taken with respect to the variable
ℓ.) Now we take the expectation, denoted E, over all the possible choices of ǫk; by
Khintchine’s inequality,

(∑

k∈Z

|Akfℓ − Bkfℓ|
2

)1/2

≃ E

∣∣∣∣∣
∑

k∈Z

ǫk(Akfℓ − Bkfℓ)

∣∣∣∣∣ .
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Taking the ℓ2(dℓ) and then Lp norms on both sides, we get
∥∥∥∥∥∥

(∑

k,ℓ∈Z

|Akfℓ − Bkfℓ|
2

)1/2
∥∥∥∥∥∥
Lp

≃

∥∥∥∥∥∥

(
E

∣∣∣∣∣
∑

k∈Z

ǫk(Akfℓ − Bkfℓ)

∣∣∣∣∣

)

ℓ2(dℓ)

∥∥∥∥∥∥
Lp

≤ E

∥∥∥∥∥∥

∣∣∣∣∣
∑

k∈Z

ǫk(Akfℓ −Bkfℓ)

∣∣∣∣∣
ℓ2(dℓ)

∥∥∥∥∥∥
Lp

.p E‖ |fℓ|ℓ2 ‖Lp

= ‖ |fℓ|ℓ2 ‖Lp.

(The first inequality is the Minkowski inequality.) The left-hand side above is precisely
‖ |Sfℓ|ℓ2 ‖Lp. This proves (7.6), and hence (3.5) of Theorem B, for 1 < p <∞.

There are at least two ways of proving (7.8). One is by complex interpolation, along
the lines of arguments in [SW78, Section 4], which we will not discuss here. Alternatively,
we can deduce (7.8) from a result of Duoandikoetxea and Rubio de Francia [DRdF86]
without using complex interpolation. To do so, let

dσk = ǫk(dµk − φkdxdy).

Then dσk has total mass ‖dσk‖ . 1, and its Fourier transform satisfies

|d̂σk(ξ, η)| . min{2k‖(ξ, η)‖, (2k‖(ξ, η)‖)−1/m}.

(Here we see the curvature of (t, tm).) Furthermore, the operator supk∈Z |f ∗ |dσk||
is bounded by the maximal Radon transform along the curve (t, tm) plus the Hardy-
Littlewood maximal operator adapted to certain non-isotropic balls in R

2. It follows
that supk∈Z |f ∗ |dσk|| is bounded on Lq(R2) for all 1 < q < ∞. Thus Theorem
B of Duoandikoetxea and Rubio de Francia [DRdF86] applies, and shows that Tf =∑

k∈Z f ∗ dσk is bounded on Lp for all 1 < p <∞. This completes our proof of (7.8).

Acknowledgements. We would like to thank C. Thiele and E. M. Stein for many help-
ful comments and discussions. Pierce is supported in part by NSF DMS-1402121. Yung
is supported in part by the Hong Kong Research Grant Council Early Career Grant
CUHK24300915. This collaboration was initiated at the Hausdorff Center for Mathe-
matics and Oberwolfach, and continued at the joint AMS-EMS-SPM 2015 international
meeting at Porto. The authors thank all institutions involved for gracious and productive
work environments.

References

[BT13] M. Bateman and C. Thiele. Lp estimates for the Hilbert transform along a one-variable
vector field. Anal. PDE, 6(7):1577–1600, 2013.

[Car66] L. Carleson. On convergence and growth of partial sums of Fourier series. Acta Math.,
116:135–157, 1966.

[Chr85] M. Christ. Hilbert transforms along curves - I. Nilpotent groups.Ann. of Math., 122:575–596,
1985.

[DPL14] F. Di Plinio and A. Lerner. On weighted norm inequalities for the Carleson and Walsh-
Carleson operator. J. Lond. Math. Soc. (2), 90(3):654–674, 2014.

[DRdF86] J. Duoandikoetxea and J. L. Rubio de Francia. Maximal and singular integral operators via
Fourier transform estimates. Invent. Math., 84(3):541–561, 1986.

[DS15] C. Demeter and P. Silva. Some new light on a few classical results. Colloq. Math., 140(1):129–
147, 2015.

[Fef73] C. Fefferman. Pointwise convergence of Fourier series. Ann. of Math. (2), 98:551–571, 1973.
26



[Gra14a] L. Grafakos. Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics.
Springer New York, 3rd edition, 2014.

[Gra14b] L. Grafakos. Modern Fourier Analysis, volume 250 of Graduate Texts in Mathematics.
Springer New York, 2014.

[Guo15] S. Guo. Oscillatory integrals related to Carleson’s theorem: fractional monomials.
arXiv:1503.04411, 2015.

[Hun68] R. A. Hunt. On the convergence of Fourier series. In Orthogonal Expansions and their Con-
tinuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), pages 235–255. Southern Illinois
Univ. Press, Carbondale, Ill., 1968.

[Lie09] V. Lie. The (weak-L2) boundedness of the quadratic Carleson operator. Geometric and
Functional Analysis, 19(2):457–497, 2009.

[Lie11] V. Lie. The polynomial Carleson operator. arXiv:1105.4504, 2011.
[LT00] M. Lacey and C. Thiele. A proof of boundedness of the Carleson operator. Math. Res. Lett.,

7(4):361–370, 2000.
[MST15] M. Mirek, E. M. Stein, and B. Trojan. ℓp(Zd)-estimates for discrete operators of Radon type:

Maximal functions and vector-valued estimates. arXiv:1512.07518, 2015.
[PY15] L. Pierce and P. Yung. A polynomial Carleson operator along the paraboloid.

arXiv:1505.03882, 2015.
[RdFRT86] J. L. Rubio de Francia, F. J. Ruiz, and J. L. Torrea. Calderón-Zygmund theory for operator-

valued kernels. Adv. in Math., 62(1):7–48, 1986.
[Ste70] E. M. Stein. Singular Integrals and Differentiability Properties of Functions. Monographs in

Harmonic Analysis. Princeton University Press, 1970.
[Ste93] E. M. Stein. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory In-

tegrals. Monographs in Harmonic Analysis. Princeton University Press, 1993.
[SW70] E. M. Stein and S. Wainger. The estimation of an integral arising in multiplier transforma-

tions. Stud. Math., 35(1):101–104, 1970.
[SW78] E. M. Stein and S. Wainger. Problems in harmonic analysis related to curvature. Bull. Amer.

Math. Soc., 84(6):1239–1295, 1978.
[SW01] E. M. Stein and S. Wainger. Oscillatory integrals related to Carleson’s theorem. Math. Res.

Lett., 8(5-6):789–800, 2001.

Shaoming Guo, Indiana University Bloomington, 107 S Indiana Ave, Bloomington, IN 47405, USA

email: shaoguo@iu.edu

Lillian B. Pierce, Duke University, Box 90320, 120 Science Drive, Durham NC 27708, USA

email: pierce@math.duke.edu

Joris Roos, University of Bonn, Mathematical Institute, Endenicher Allee 60, 53115 Bonn, Germany

email: jroos@math.uni-bonn.de

Po-Lam Yung, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, Hong Kong

email: plyung@math.cuhk.edu.hk

27


	1. Introduction
	1.1. Historical background.
	1.2. Statements of main results.
	1.3. Consequences of bounding partial Carleson operators

	2. Overview of the methods
	2.1. Symmetries of our operators
	2.2. Method of proof: Theorem 1.1
	2.3. Method of proof: Theorem 1.2

	3. Preliminaries
	3.1. Notation
	3.2. Littlewood-Paley decomposition
	3.3. Vector-valued inequalities

	4. The asymmetric case: Theorem 1.1
	4.1. The BNm,d operators.
	4.2. The ANm,d operators.
	4.3. Proof of Lemma 2.1
	4.4. Proof of Lemma 4.1

	5. The symmetric case: Theorem 1.2
	5.1. Single annulus estimate.
	5.2. Square function estimate
	5.3. Remarks on the proof for Am,1

	6. Deductions for partial Carleson operators
	6.1. L2 consequences of partial Carleson bounds
	6.2. L2 deductions for partial Carleson operators

	7. Appendix: Proof of vector-valued inequalities
	7.1. Proof of Theorem A
	7.2. Proof of Theorem B
	Acknowledgements.

	References

