125 research outputs found

    Cosmic Numbers: A Physical Classification for Cosmological Models

    Get PDF
    We introduce the notion of the cosmic numbers of a cosmological model, and discuss how they can be used to naturally classify models according to their ability to solve some of the problems of the standard cosmological model.Comment: 3 pages, no figures. v2: Two references added, cosmetic changes. Version to appear in Phys. Rev. D (Brief reports

    An Assessment of the Use of Chimpanzees in Hepatitis C Research Past, Present and Future: 1. Validity of the Chimpanzee Model

    Get PDF
    The USA is the only significant user of chimpanzees in biomedical research in the world, since many countries have banned or limited the practice due to substantial ethical, economic and scientific concerns. Advocates of chimpanzee use cite hepatitis C research as a major reason for its necessity and continuation, in spite of supporting evidence that is scant and often anecdotal. This paper examines the scientific and ethical issues surrounding chimpanzee hepatitis C research, and concludes that claims of the necessity of chimpanzees in historical and future hepatitis C research are exaggerated and unjustifiable, respectively. The chimpanzee model has several major scientific, ethical, economic and practical caveats. It has made a relatively negligible contribution to knowledge of, and tangible progress against, the hepatitis C virus compared to non-chimpanzee research, and must be considered scientifically redundant, given the array of alternative methods of inquiry now available. The continuation of chimpanzee use in hepatitis C research adversely affects scientific progress, as well as chimpanzees and humans in need of treatment. Unfounded claims of its necessity should not discourage changes in public policy regarding the use of chimpanzees in US laboratories

    Phenotypic Diversity for Seed Mineral Concentration in North American Dry Bean Germplasm of Middle American Ancestry

    Get PDF
    Dry bean (Phaseolus vulgaris L.) seeds are a major protein, carbohydrate, and mineral source in the human diet of peoples in multiple regions of the world. Seed mineral biofortification is an ongoing objective to improve this important food source. The objective of this research was to assess the seed mineral concentration of five macroelements and eight microelements in a large panel (n = 277) of modern race Durango and race Mesoamerica genotypes to determine if variability existed that could be exploited for targeted seed biofortification. Varieties that derive from these races are found in many diets throughout the world. The panel was grown in replicated trials under typical production conditions in the major bean growing regions of the United States, and a subset of the panel was also grown in replicated trials at three locations under control and terminal drought conditions. Except for K, seed mineral concentrations were higher for race Mesoamerica genotypes. Significantly higher seed concentrations for the majority of the minerals were observed for white-seeded genotypes and race Durango genotypes with the now preferred indeterminate, upright growth habit. Modern genotypes (since 1997) had equal or increased mineral concentrations compared with older genotypes. Drought affected mineral content differentially, having no effect on the microelement content but increased Co, Fe, and Ni concentrations. The correlation of Ca and Mn concentrations suggests that these elements may share seed deposition mechanisms. The high heritability for seed mineral concentration implies that breeding progress can be achieved by parental selection from this panel

    Aspects of String-Gas Cosmology at Finite Temperature

    Get PDF
    We study string-gas cosmology in dilaton gravity, inspired by the fact that it naturally arises in a string theory context. Our main interest is the thermodynamical treatment of the string-gas and the resulting implications for the cosmology. Within an adiabatic approximation, thermodynamical equilibrium and a small, toroidal universe as initial conditions, we numerically solve the corresponding equations of motions in two different regimes describing the string-gas thermodynamics: (i) the Hagedorn regime, with a single scale factor, and (ii) an almost-radiation dominated regime, which includes the leading corrections due to the lightest Kaluza Klein and winding modes, with two scale factors. The scale factor in the Hagedorn regime exhibits very slow time evolution with nearly constant energy and negligible pressure. By contrast, in case (ii) we find interesting cosmological solutions where the large dimensions continue to expand and the small ones are kept undetectably small.Comment: 21 pages, 5 eps figure

    Modern temporal network theory: A colloquium

    Full text link
    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.Comment: Final accepted versio

    The epitaxy of gold

    Full text link
    corecore