17,269 research outputs found

    Differential Privacy and the Fat-Shattering Dimension of Linear Queries

    Full text link
    In this paper, we consider the task of answering linear queries under the constraint of differential privacy. This is a general and well-studied class of queries that captures other commonly studied classes, including predicate queries and histogram queries. We show that the accuracy to which a set of linear queries can be answered is closely related to its fat-shattering dimension, a property that characterizes the learnability of real-valued functions in the agnostic-learning setting.Comment: Appears in APPROX 201

    Phase separation dynamics in colloid-polymer mixtures: the effect of interaction range

    Full text link
    Colloid-polymer mixtures may undergo either fluid-fluid phase separation or gelation. This depends on the depth of the quench (polymer concentration) and polymer-colloid size ratio. We present a real-space study of dynamics in phase separating colloid-polymer mixtures with medium- to long-range attractions (polymer-colloid size ratio q_R=0.45-0.89, with the aim of understanding the mechanism of gelation as the range of the attraction is changed. In contrast to previous studies of short-range attractive systems, where gelation occurs shortly after crossing the equilibrium phase boundary, we find a substantial region of fluid-fluid phase separation. On deeper quenches the system undergoes a continuous crossover to gel formation. We identify two regimes, `classical' phase separation, where single particle relaxation is faster than the dynamics of phase separation, and `viscoelastic' phase separation, where demixing is slowed down appreciably due to slow dynamics in the colloid-rich phase. Particles at the surface of the strands of the network exhibit significantly greater mobility than those buried inside the gel strand which presents a method for coarsening.Comment: 8 page

    Optimal measurements for relative quantum information

    Get PDF
    We provide optimal measurement schemes for estimating relative parameters of the quantum state of a pair of spin systems. We prove that the optimal measurements are joint measurements on the pair of systems, meaning that they cannot be achieved by local operations and classical communication. We also demonstrate that in the limit where one of the spins becomes macroscopic, our results reproduce those that are obtained by treating that spin as a classical reference direction.Comment: 6 pages, 1 figure, published versio

    Decomposition of any quantum measurement into extremals

    Full text link
    We design an efficient and constructive algorithm to decompose any generalized quantum measurement into a convex combination of extremal measurements. We show that if one allows for a classical post-processing step only extremal rank-1 POVMs are needed. For a measurement with NN elements on a dd-dimensional space, our algorithm will decompose it into at most (N1)d+1(N-1)d+1 extremals, whereas the best previously known upper bound scaled as d2d^2. Since the decomposition is not unique, we show how to tailor our algorithm to provide particular types of decompositions that exhibit some desired property.Comment: 10 page

    Quantum walks in higher dimensions

    Full text link
    We analyze the quantum walk in higher spatial dimensions and compare classical and quantum spreading as a function of time. Tensor products of Hadamard transformations and the discrete Fourier transform arise as natural extensions of the quantum coin toss in the one-dimensional walk simulation, and other illustrative transformations are also investigated. We find that entanglement between the dimensions serves to reduce the rate of spread of the quantum walk. The classical limit is obtained by introducing a random phase variable.Comment: 6 pages, 6 figures, published versio

    Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly

    No full text
    Inverse sphere shaped Ni arrays were fabricated by electrodeposition on Si through the guided self-assembly of polystyrene latex spheres in Si/SiO2 patterns. It is shown that the size commensurability of the etched tracks is critical for the long range ordering of the spheres. Moreover, noncommensurate guiding results in the reproducible periodic triangular distortion of the close packed self-assembly. Magnetoresistance measurements on the Ni arrays were performed showing room temperature anisotropic magnetoresistance of 0.85%. These results are promising for self-assembled patterned storage media and magnetoresistance devices

    Self-Consistent Measurement and State Tomography of an Exchange-Only Spin Qubit

    Full text link
    We report initialization, complete electrical control, and single-shot readout of an exchange-only spin qubit. Full control via the exchange interaction is fast, yielding a demonstrated 75 qubit rotations in under 2 ns. Measurement and state tomography are performed using a maximum-likelihood estimator method, allowing decoherence, leakage out of the qubit state space, and measurement fidelity to be quantified. The methods developed here are generally applicable to systems with state leakage, noisy measurements, and non-orthogonal control axes.Comment: contains Supplementary Informatio

    Coupling Two Spin Qubits with a High-Impedance Resonator

    Full text link
    Fast, high-fidelity single and two-qubit gates are essential to building a viable quantum information processor, but achieving both in the same system has proved challenging for spin qubits. We propose and analyze an approach to perform a long-distance two-qubit controlled phase (CPHASE) gate between two singlet-triplet qubits using an electromagnetic resonator to mediate their interaction. The qubits couple longitudinally to the resonator, and by driving the qubits near the resonator's frequency they can be made to acquire a state-dependent geometric phase that leads to a CPHASE gate independent of the initial state of the resonator. Using high impedance resonators enables gate times of order 10 ns while maintaining long coherence times. Simulations show average gate fidelities of over 96% using currently achievable experimental parameters and over 99% using state-of-the-art resonator technology. After optimizing the gate fidelity in terms of parameters tuneable in-situ, we find it takes a simple power-law form in terms of the resonator's impedance and quality and the qubits' noise bath.Comment: 11 pages, 2 figure

    Unitary transformations for testing Bell inequalities

    Full text link
    It is shown that optical experimental tests of Bell inequality violations can be described by SU(1,1) transformations of the vacuum state, followed by photon coincidence detections. The set of all possible tests are described by various SU(1,1) subgroups of Sp(8,R\Bbb R). In addition to establishing a common formalism for physically distinct Bell inequality tests, the similarities and differences of post--selected tests of Bell inequality violations are also made clear. A consequence of this analysis is that Bell inequality tests are performed on a very general version of SU(1,1) coherent states, and the theoretical violation of the Bell inequality by coincidence detection is calculated and discussed. This group theoretical approach to Bell states is relevant to Bell state measurements, which are performed, for example, in quantum teleportation.Comment: 3 figure

    Degradation of a quantum directional reference frame as a random walk

    Get PDF
    We investigate if the degradation of a quantum directional reference frame through repeated use can be modeled as a classical direction undergoing a random walk on a sphere. We demonstrate that the behaviour of the fidelity for a degrading quantum directional reference frame, defined as the average probability of correctly determining the orientation of a test system, can be fit precisely using such a model. Physically, the mechanism for the random walk is the uncontrollable back-action on the reference frame due to its use in a measurement of the direction of another system. However, we find that the magnitude of the step size of this random walk is not given by our classical model and must be determined from the full quantum description.Comment: 5 pages, no figures. Comments are welcome. v2: several changes to clarify the key results. v3: journal reference added, acknowledgements and references update
    corecore