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Optimal measurements for relative quantum information
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We provide optimal measurement schemes for estimating relative parameters of the quantum state
of a pair of spin systems. Specifically, we consider the task of estimating the angle between the spin
directions of a pair of systems in SU(2) coherent states. We prove that the optimal measurements are
non-local, in the sense that they cannot be achieved by local operations and classical communication.
We also demonstrate that in the limit where one or both of the spins becomes macroscopic, our
results reproduce those that are obtained by treating the macroscopic spin classically.
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Whenever a system can be decomposed into parts, a
distinction can be made between global and relative de-
grees of freedom. Global degrees of freedom describe the
system’s relation to something external to it, while the
relative ones describe the relations between its parts. En-
coding information preferentially into these relative de-
grees of freedom can be very useful in situations where
the parts are subject to an environmental interaction that
does not distinguish the parts (collective decoherence), or
where they are subjected to an unknown unitary, or if the
external reference frame with respect to which they were
prepared is unknown. Indeed, such relative encodings
have been shown to have applications in quantum compu-
tation [1], communication [2, 3] and cryptography [4, 5].

Determining the optimal measurement schemes [6] for
estimating global parameters of a quantum state has been
the subject of several recent investigations [7, 8]. This
Letter is concerned with a complementary problem: de-
termining the optimal measurement schemes for estimat-
ing relative parameters of a quantum state. A physical
example is given by two uncorrelated (i.e., unentangled)
systems, the states of which have small variance in the
relevant degree of freedom. Estimation tasks for such
an example include estimating the distance between two
minimum uncertainty wavepackets of a massive particle,
or the phase between a pair of coherent states of the
electromagnetic field, or estimating the angle between
the directions defined by a pair of SU(2) spin coherent
states [9]. It is this last example which shall be the focus
of this Letter, although our results apply to a larger class
of states, and can be applied to other variables.

One scheme for measuring such relative quantities is
to measure each system independently with respect to
an external RF, e.g., to perform an optimal estimation
of each spin direction and to then calculate the angle
between these estimates. We prove that such (local)
schemes are not optimal. In fact, we find that possess-
ing an external RF provides no advantage. On the other
hand, the ability to perform non-local measurements is
necessary to achieve the optimum.

Specifically, for estimating a relative angle, we prove
that the optimal measurement can be chosen to be
rotationally-invariant, and we use this fact to solve the
optimization problem completely. We then investigate
the information gain that can be achieved as different as-
pects of the estimation task are varied, such as the prior
over the relative angle or the magnitude of the spins.
Finally, we show that local measurements, which can be
implemented using local operations and classical commu-
nication (LOCC), perform worse than those that make
use of entanglement. Throughout, we explore what oc-
curs in the limit where one of the spins becomes large.
We find that, in this limit, our optimal relative measure-
ment gives the same information gain as does the optimal
measurement for estimating a single spin’s direction rel-
ative to a classical RF, and that the need for non-local
measurements disappears. These results contribute to
our understanding of how the macroscopic systems that
act as RFs can be treated within quantum theory, and
more specifically how global degrees of freedom, which
are defined relative to a classical RF, can be treated as a
relative ones between quantized systems. Such an under-
standing is likely to be critical for quantum gravity and
cosmology, wherein all degrees of freedom are expected
to be relative [10].

Consider states in the joint Hilbert space Hj1 ⊗Hj2 of
a spin-j1 and a spin-j2 system. This Hilbert space carries
a global tensor representation R(Ω) = Rj1 (Ω) ⊗ Rj2(Ω)
of a rotation Ω ∈ SU(2) where each system is rotated
by the same amount. We can parametrise the states in
Hj1 ⊗Hj2 by two sets of parameters, α and Ω, such that
a state ρα,Ω transforms under a global rotation R(Ω′) as

R(Ω′)ρα,ΩR(Ω′)† = ρα,Ω′Ω . (1)

Defining a global parameter as one whose variation cor-
responds to a global rotation of the state, and a relative
parameter as one that is invariant under such a rotation,
we see that α is relative and Ω is global. In the example
we investigate, a product of two SU(2) coherent states,
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there is only a single relative parameter α characterising
the angle between the two spins.

Suppose that Alice prepares a pair of spins in the state
ρα,Ω and Bob wishes to acquire information about the
relative parameter α without having any prior knowl-
edge of the global parameter Ω. The most general mea-
surement that can be performed by Bob is a positive
operator valued measure (POVM) [11] represented by a
set of operators {Eλ}. Upon obtaining the outcome λ,
Bob uses Bayes’ theorem to update his knowledge about
α,Ω from his prior distribution p(α,Ω), to his posterior
distribution: p(α,Ω|λ) = Tr(Eλρα,Ω)p(α,Ω)/p(λ), where
p(λ) =

∫

Tr(Eλρα,Ω)p(α,Ω)dαdΩ. Assuming that Bob
has no prior knowledge of Ω, we may take p(α,Ω)dαdΩ =
p(α)dαdΩ where p(α) is Bob’s prior probability density
over α and dΩ is the SU(2) invariant measure.

Any measure of Bob’s information gain about α can
depend only on the prior and the posterior distributions
over α for every λ. The latter are obtained by marginal-
ization of the p(α,Ω|λ), and are given by p(α|λ) =
Tr(Eλρα)p(α)/p(λ), where ρα =

∫

R(Ω′)ρα,ΩR(Ω′)†dΩ′.
For a given POVM {Eλ}, note that any other POVM
related by a global rotation (i.e., E′

λ = R(Ω)EλR(Ω)†)
yields precisely the same posterior distributions over α.
This property also holds true for the POVM with ele-
ments Ēλ =

∫

R(Ω)EλR(Ω)†dΩ, which is rotationally-
invariant, that is,

R(Ω)ĒλR(Ω)† = Ēλ , ∀ Ω ∈ SU(2) . (2)

We define POVMs that yield the same posterior distri-
bution over α to be informationally equivalent. Because
every equivalence class contains a rotationally-invariant
POVM of the form (2), it is sufficient to consider only
rotationally-invariant POVMs in optimizing Bob’s choice
of measurement. These can be implemented without an
external RF for spatial orientation. Moreover, they have
a very particular form, as we now demonstrate.

The joint Hilbert space for the two spins decomposes
into a multiplicity-free direct sum of irreducible repre-
sentations (irreps) of SU(2), i.e., eigenspaces HJ of total
angular momentum J . Using Schur’s lemma [12], it can
be shown that any positive operator satisfying (2) can
be expressed as a positive-weighted sum of projectors ΠJ

onto the subspaces HJ , that is, as Eλ =
∑

J sλ,JΠJ ,
where sλ,J ≥ 0. In order to ensure that

∑

λ Eλ = I, we
require that

∑

λ sλ,J = 1, so that sλ,J is a probability
distribution over λ. The {Eλ} can be obtained by ran-
dom sampling of the projective measurement elements
{ΠJ}, and such a sampling cannot increase the informa-
tion (quantified by some concave function such as the
average information gain defined below) about the sys-
tem. Thus, the most informative rotationally-invariant
POVM is simply the projective measurement {ΠJ}.

We have proved the main result of the letter, which
can be summarized as follows: If the prior over global
rotations Ω is uniform, then for any prior over the relative

parameters α, the maximum information gain (by any
measure) can be achieved using a measurement of the
rotationally-invariant projective measurement {ΠJ}.

A useful way to understand this result is to note that
our estimation task is equivalent to one wherein Alice
prepares a state ρα (rather than ρα,Ω) and Bob seeks to
estimate α. Because the ρα are rotationally-invariant,
they are also positive sums of the ΠJ and thus may be
treated as classical probability distributions over J . The
problem reduces to a discrimination among such distri-
butions, for which Bob can do no better than to measure
the value of J .

We now apply this result to several important and
illustrative examples of relative parameter estimation.
We shall quantify the degree of success in the es-
timation by the average decrease in Shannon en-
tropy of the distribution over α [11], which is equiv-
alent to the average (Kullback-Leibler) relative infor-
mation between the posterior and the prior distribu-
tions over α, specifically Iav =

∑

λ p(λ)Iλ, where Iλ =
∫

p(α|λ) log2

[

p(α|λ)/p(α)
]

dα. We refer to this quantity
as simply the average information gain.

Two spin-1/2 systems. The simplest example of rela-
tive parameter estimation arises in the context of a pair
of spin-1/2 systems. Alice prepares the product state
|n1〉 ⊗ |n2〉, where |n〉 is the eigenstate of J · n with
positive eigenvalue (note that every state of a spin 1/2
system is an SU(2) coherent state). Bob’s task is to es-
timate the relative angle α = cos−1(n1 · n2) given no
knowledge of the global orientation of the state. Be-
cause the joint Hilbert space decomposes into a J = 0
and a J = 1 irrep, the optimal POVM has the form
{ΠA,ΠS}, where ΠA = |Ψ−〉〈Ψ−| is the projector onto
the antisymmetric (J = 0) subspace and ΠS = I − ΠA

is the projector onto the symmetric (J = 1) subspace.
The conditional probability of outcomes A and S given
α are simply p(A|α) = Tr(ΠAρα) = 1

2
sin2(α/2) and

p(S|α) = 1 − p(A|α). The average information gain and
the optimal guess for the value of α depend on Bob’s
prior over α. We consider two natural choices of prior.

(i) Parallel versus anti-parallel spins: This situation cor-
responds to a prior p(α=0) = p(α=π) = 1/2, yielding
p(A) = 1/4, p(S) = 3/4 and posteriors p(α=0|A) = 0,
p(α=π|A) = 1, p(α=0|S) = 2/3, p(α=π|S) = 1/3. Upon
obtaining the antisymmetric outcome, Bob knows that
the spins were anti-parallel, whereas upon obtaining the
symmetric outcome, they are deemed to be twice as likely
to have been parallel than anti-parallel. We find IA = 1,
IS = 5

3
− log2 3 ≃ .08 170, i.e. 1 bit of information is

gained upon obtaining the antisymmetric outcome, and
0.08170 bits for the symmetric outcome. On average,
Bob gains Iav = 1

4
IA + 3

4
IS ≃ 0.3113 bits of information.

(ii) Uniform prior for each system’s spin direction. In
this case, the prior over α is p(α) = 1

2
sinα. This implies

posteriors p(α|A) = sin2(α/2) sinα and p(α|S) = 1

3
(2 −
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FIG. 1: Average information gain for measurements on a
spin-1/2 system and a spin-j system. The curves (a),(b) cor-
respond to the optimal measurement and the optimal local
measurement for the case when the spins are prepared paral-
lel or antiparallel with equal probability. The curves (c),(d)
correspond to the optimal measurement and the optimal local
measurements for the case when the initial direction of each
spin is chosen uniformly from the sphere.

sin2(α/2)) sinα which are peaked at 2π/3 and 0.4094π
respectively. It follows that these are the best guesses
for the angle α given each possible outcome. Using the
posteriors, we find IA ≃ 0.2786, IS ≃ 0.02702, which
yields Iav ≃ 0.08993. Less information is acquired than
in the parallel-antiparallel estimation problem, because
angles near π/2 are more difficult to distinguish.

One spin-1/2, one spin-j system. We now consider
the estimation of the angle between a spin-1/2 system
and a spin-j system for some arbitrary j, where the lat-
ter is in an SU(2) coherent state |jn〉 (the eigenstate
of J · n associated with the maximum eigenvalue) [9].
Alice prepares |n1〉 ⊗ |jn2〉 and Bob seeks to estimate
α = cos−1(n1 · n2). The joint Hilbert space decomposes
into a sum of a J = j+1/2 irrep and a J = j−1/2 irrep.
The optimal measurement is the two outcome POVM
{Π+,Π−}, where Π± is the projector onto the j ± 1/2
irrep [18]. Using Clebsch-Gordon coefficients, the proba-
bilities for each of the outcomes are found to be p(−|α) =
Tr(Π−ρα) = 2j

2j+1
sin2(α/2) and p(+|α) = 1 − p(−|α).

We again consider two possible priors over α.

(i) Parallel versus anti-parallel spins: A calculation simi-
lar to the one for two spin-1/2 systems yields the posteri-
ors p(α=0|+) = (2j+1)/(2j+2), p(α=π|+) = 1/(2j+2),
p(α=0|−) = 0, p(α=π|−) = 1. Using these, we can cal-
culate the average information gain as a function of j;
the result is curve (a) of Fig. 1. The j = 1/2 value is
the average information gain for two spin-1/2 systems,
derived previously. In the limit j → ∞, p(α=0|+) → 1

and p(α=π|+) → 0 so that the outcome of the measure-
ment leaves no uncertainty about whether the spins were
parallel or antiparallel, and the average information gain
goes to one bit. Thus, in the limit that one of the spins
becomes large, the problem becomes equivalent to esti-
mating whether the spin-1/2 is up or down compared
to some classical reference direction, where one expects
an average information gain of one bit for the optimal
measurement.

(ii) Uniform prior for each system’s spin direction: Fol-
lowing the same steps as before, the average informa-
tion gain can be derived as a function of j; the result
is curve (c) of Fig. 1. In the limit j → ∞, we find
Iav = 1 − (2 ln 2)−1 ≃ 0.2787 bits, which is precisely
the information gain for the optimal measurement of the
angle of a spin-1/2 system relative to a classical direction
given a uniform prior over spin directions [11].

Optimal local measurements: Consider again the
simplest case of a pair of spin-1/2 systems. The op-
timal measurement in this case was found to be the
POVM {ΠA,ΠS}. This measurement cannot be imple-
mented by local operations on the individual systems be-
cause ΠA is a projector onto an entangled state. We
now determine the optimal local measurement. We do
so by first finding the optimal separable POVM (one for
which all the elements are separable operators), and then
showing that this can be achieved by LOCC. (Note the
POVMs for LOCC measurements are necessarily separa-
ble.) The rotationally invariant states for a pair of spin-
1/2 systems, called Werner states [14], have the form
ρW = pΠA + (1 − p)ΠS/3, and are known to only be
separable for p < 1/2 [15]. Thus, the greatest relative
weight of ΠA to ΠS that can occur in a separable posi-
tive operator is 3. The closest separable POVM to the
optimal POVM {ΠA,ΠS} is therefore {ΠA + 1

3
ΠS ,

2

3
ΠS}.

However, it turns out that this POVM is informationally
equivalent to measuring the spin of each system along the
same (arbitrary) axis and registering whether the out-
comes are the same or not, which clearly only involves
local operations (and does not even require classical com-
munication). Because the POVM {ΠA + 1

3
ΠS ,

2

3
ΠS}

can be obtained by random sampling of the outcome of
{ΠA,ΠS}, the former is strictly less informative than the
latter. Indeed, the maximum average information gain
with the optimal local measurement is 0.0817 bits for
case (i) above, and 0.02702 bits for case (ii), and both of
these values are strictly less than those obtained for the
optimal (non-local) measurement.

We extend this analysis to the spin-1/2, spin-j case.
Consider the following LOCC measurement. The spin-
j system is measured along the complete basis of SU(2)
coherent states {|jnm〉}m where m = 0, . . . , 2j and nm

points at an angle θm = 2πm
2j+1

in some fixed but arbi-
trary plane. Then, conditional on the outcome m of
this measurement, the spin-1/2 system is measured along
the basis {|nm〉, |−nm〉}. The measurement outcome
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of the spin-j system is then discarded, and all that is
registered is whether the outcome for the spin-1/2 sys-
tem is ±nm; i.e., whether the two spins are aligned or
anti-aligned. The resulting 2-outcome measurement is
informationally equivalent to the rotationally invariant
POVM {Π1 = 2j+1

2j+2
Π+, Π2 = Π− + 1

2j+2
Π+}. By nu-

merically calculating the partial transpose of the oper-
ator Π− + xΠ+, the negativity of which is a necessary
condition for non-separability [16], we find that {Π1,Π2}
is the optimal separable POVM. Thus, again, the opti-
mal separable POVM can be implemented by LOCC and
gives less information than the optimal (non-local) mea-
surement. The average information gain achieved by this
measurement, as a function of j, in cases (i) and (ii) are
plotted as curves (b) and (d) of Fig. 1. Note that the op-
timum can be achieved by LOCC measurements in the
limit j → ∞.

Discussion: We now briefly discuss some other relative
parameter estimation tasks for which our result provides
the solution. The case we have yet to address is the es-
timation of the angle between a spin-j1 and a spin-j2
system, both in SU(2) coherent states, for arbitrary j1,
j2. Assuming j2 ≥ j1, the optimal measurement is the
(2j1 +1)-element projective measurement which projects
onto the subspaces of fixed total angular momentum J .
The posterior distributions over α and the average in-
formation gain can be calculated in the same manner as
before, although in this case they are substantially more
complicated. However, in the limit j2 → ∞, the Clebsch-
Gordon coefficients simplify, and one can show that the
probability of a measurement outcome J approaches the
probabilities obtained using the Born rule for a projective
measurement along the classical direction defined by the
spin-j2 system. As a result, the posterior distribution for
any measurement result will agree with what would be
obtained classically, regardless of the prior over α. If, in
addition, we take j1 → ∞, the information gain for α be-
comes infinite (for any prior distribution) and thus α can
be inferred with certainty from the measurement result,
as expected for a measurement of the angle between two
classical directions. Our results also indicate that, in the
classical limit, a measurement of the magnitude of total
angular momentum should be sufficient to estimate the
relative angle, which is indeed the case if the magnitude
of each spin is known.

It should be noted that estimating the relative angle
between a pair of SU(2) coherent states is of particular
importance because estimating the eccentricity of an el-
liptic Rydberg state of a Hydrogen atom is an instance
of the same problem [17]. Rydberg states are significant
as they can be prepared experimentally. Our results im-
ply that an optimal estimation of eccentricity is in fact
straightforward to achieve experimentally because it in-
volves only a measurement of the magnitude of the total
angular momentum of the atom.

Our results are also applicable to systems other than

spin. For example, for any realization of a pair of 2-level
systems (qubits), the degree of nonorthogonality between
their states (measured by, say, the overlap |〈ψ1|ψ2〉|) is
invariant under global transformations and is thus a rel-
ative parameter. Our measurement is thus optimal for
estimating this nonorthogonality.

In addition to solving various estimation problems, we
have shown that a macroscopic spin in the appropriate
limit is equivalent to a classical external RF as far as
relative parameter estimation is concerned. This result
suggest that it may be possible to express all measure-
ments (and possibly all operations) in a covariant, rela-
tive framework that respects the underlying symmetries
of the theory. Such a framework is necessary if one wishes
to abide by the principle, which has been so fruitful in
the study of space and time but has yet to be embraced
in the quantum context, that all degrees of freedom must
be defined in terms of relations.

There remain many important questions for future in-
vestigation. While we have focussed on estimating rel-
ative parameters of product states, one can also con-
sider relative parameters of entangled states, and here
the landscape becomes much richer. For instance, for a
pair of spin-1/2 systems, while the set of product states
supports a single relative parameter, the set of all two-
qubit states supports three: the angle between the spins
in a term of the Schmidt decomposition [11], the phase
between the two terms of this decomposition, and the
degree of entanglement between the spins. Our measure-
ment scheme is optimal for estimating these relative pa-
rameters as well. Given the significance of entanglement
for quantum information theory, there is likely much to
be learned from investigations of other sorts of relative
quantum information.
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