193 research outputs found

    Organic vine growing: from breaking new ground to bringing back the taste of the terroir

    Get PDF
    Organic farming certification has certainly contributed to unifying organic production, particularly by reducing the number of private charters. However, this reduction should not be misleading. Organic agriculture cannot be reduced to just a label and includes other requirements related to ethics, agronomy and economic policy whose implementation contributes to the diversification of marketing organisations that selectively ensure the marketing of organic products. Furthermore, in the case of viticulture, organic producers have recently placed more emphasis on the taste quality of their wines that they have linked in various ways to the quality of the environment. This new link between taste and environment has added a new complexity to marketing organisations and has given impetus to the use of environmentally-friendly vine-growing practices that have become a resource for the development of wines that are strongly identified with a terroir. Therefore, an increasing number of quality wines make use of organic or biodynamic practices to make better wines that are more representative of the quality of their terroir, but that do not emphasize the corresponding certification in order to keep their quality message clear

    Longitudinal ambulatory measurements of gait abnormality in dystrophin-deficient dogs

    Get PDF
    Chantier qualité GAInternational audienceABSTRACT: BACKGROUND: This study aimed to measure the gait abnormalities in GRMD (Golden retriever muscular dystrophy) dogs during growth and disease progression using an ambulatory gait analyzer (3D-accelerometers) as a possible tool to assess the effects of a therapeutic intervention. METHODS: Six healthy and twelve GRMD dogs were evaluated twice monthly, from the age of two to nine months. The evolution of each gait variable previously shown to be modified in control and dystrophin-deficient adults was assessed using two-ways variance analysis (age, clinical status) with repeated measurements. A principal component analysis (PCA) was applied to perfect multivariate data interpretation. RESULTS: Speed, stride length, total power and force significantly already decreased (p < 0.01) at the age of 2 months. The other gait variables (stride frequency, relative power distributions along the three axes) became modified at later stages. Using the PCA analysis, a global gait index taking into account the main gait variables was calculated, and was also consistent to detect the early changes in the GRMD gait patterns, as well as the progressive degradation of gait quality. CONCLUSION: The gait variables measured by the accelerometers were sensitive to early detect and follow the gait disorders and mirrored the heterogeneity of clinical presentations, giving sense to monitor gait in GRMD dogs during progression of the disease and pre-clinical therapeutic trials

    A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thoroughbred horses have been selected for traits contributing to speed and stamina for centuries. It is widely recognized that inherited variation in physical and physiological characteristics is responsible for variation in individual aptitude for race distance, and that muscle phenotypes in particular are important.</p> <p>Results</p> <p>A genome-wide SNP-association study for optimum racing distance was performed using the EquineSNP50 Bead Chip genotyping array in a cohort of <it>n </it>= 118 elite Thoroughbred racehorses divergent for race distance aptitude. In a cohort-based association test we evaluated genotypic variation at 40,977 SNPs between horses suited to short distance (≤ 8 f) and middle-long distance (> 8 f) races. The most significant SNP was located on chromosome 18: BIEC2-417495 ~690 kb from the gene encoding myostatin (<it>MSTN</it>) [<it>P</it><sub>unadj. </sub>= 6.96 × 10<sup>-6</sup>]. Considering best race distance as a quantitative phenotype, a peak of association on chromosome 18 (chr18:65809482-67545806) comprising eight SNPs encompassing a 1.7 Mb region was observed. Again, similar to the cohort-based analysis, the most significant SNP was BIEC2-417495 (<it>P</it><sub>unadj. </sub>= 1.61 × 10<sup>-9</sup>; <it>P</it><sub>Bonf. </sub>= 6.58 × 10<sup>-5</sup>). In a candidate gene study we have previously reported a SNP (g.66493737C>T) in <it>MSTN </it>associated with best race distance in Thoroughbreds; however, its functional and genome-wide relevance were uncertain. Additional re-sequencing in the flanking regions of the <it>MSTN </it>gene revealed four novel 3' UTR SNPs and a 227 bp SINE insertion polymorphism in the 5' UTR promoter sequence. Linkage disequilibrium was highest between g.66493737C>T and BIEC2-417495 (<it>r</it><sup>2 </sup>= 0.86).</p> <p>Conclusions</p> <p>Comparative association tests consistently demonstrated the g.66493737C>T SNP as the superior variant in the prediction of distance aptitude in racehorses (g.66493737C>T, <it>P </it>= 1.02 × 10<sup>-10</sup>; BIEC2-417495, <it>P</it><sub>unadj. </sub>= 1.61 × 10<sup>-9</sup>). Functional investigations will be required to determine whether this polymorphism affects putative transcription-factor binding and gives rise to variation in gene and protein expression. Nonetheless, this study demonstrates that the g.66493737C>T SNP provides the most powerful genetic marker for prediction of race distance aptitude in Thoroughbreds.</p

    Pre-microRNA and Mature microRNA in Human Mitochondria

    Get PDF
    Chantier qualité GAInternational audienceBACKGROUND: Because of the central functions of the mitochondria in providing metabolic energy and initiating apoptosis on one hand and the role that microRNA (miRNA) play in gene expression, we hypothesized that some miRNA could be present in the mitochondria for post-transcriptomic regulation by RNA interference. We intend to identify miRNA localized in the mitochondria isolated from human skeletal primary muscular cells. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the potential origin of mitochondrial miRNA, we in-silico searched for microRNA candidates in the mtDNA. Twenty five human pre-miRNA and 33 miRNA aligments (E-value35) for the smallest RNA input concentration and 204 miRNA for the maximum RNA input concentration. In silico analysis predicted 80 putative miRNA target sites in the mitochondrial genome (E-value<0.05). CONCLUSIONS/SIGNIFICANCE: The present study experimentally demonstrated for the first time the presence of pre-miRNA and miRNA in the human mitochondria isolated from skeletal muscular cells. A set of miRNA were significantly detected in mitochondria fraction. The origin of these pre-miRNA and miRNA should be further investigate to determine if they are imported from the cytosol and/or if they are partially processed in the mitochondria
    corecore