48 research outputs found
Expression of Interest for a Novel Search for CP Violation in the Neutrino Sector: DAEdALUS
Submitted to the DUSEL DirectorateSubmitted to the DUSEL DirectorateDAEdALUS, a Decay-At-rest Experiment for delta_CP studies At the Laboratory for Underground Science, provides a new approach to the search for CP violation in the neutrino sector. The design utilizes low-cost, high-power proton accelerators under development for commercial uses. These provide neutrino beams with energy up to 52 MeV from pion and muon decay-at-rest. The experiment searches for aninu_mu to antinu_e at short baselines corresponding to the atmospheric Delta m^2 region. The antinu_e will be detected, via inverse beta decay, in the 300 kton fiducial-volume Gd-doped water Cherenkov neutrino detector proposed for the Deep Underground Science and Engineering Laboratory (DUSEL). DAEdALUS opens new opportunities for DUSEL. It provides a high-statistics, low-background alternative for CP violation searches which matches the capability of the conventional long-baseline neutrino experiment, LBNE. Because of the complementary designs, when DAEdALUS antineutrino data are combined with LBNE neutrino data, the sensitivity of the CP-violation search improves beyond any present proposals, including the proposal for Project X. Also, the availability of an on-site neutrino beam opens opportunities for additional physics, both for the presently planned DUSEL detectors and for new experiments at a future 300 ft campus
Suppression of Lung Adenocarcinoma Progression by Nkx2-1
Despite the high prevalence and poor outcome of patients with
metastatic lung cancer the mechanisms of tumour progression and
metastasis remain largely uncharacterized. Here we modelled
human lung adenocarcinoma, which frequently harbours activating
point mutations in KRAS and inactivation of the p53 pathway,
using conditional alleles in mice. Lentiviral-mediated somatic
activation of oncogenic Kras and deletion of p53 in the lung epithelial
cells of Kras[superscript LSL-G12D/+];p53[superscript flox/flox] mice initiates lung adenocarcinoma
development4. Although tumours are initiated synchronously
by defined genetic alterations, only a subset becomes malignant,
indicating that disease progression requires additional alterations.
Identification of the lentiviral integration sites allowed us to distinguish
metastatic from non-metastatic tumours and determine the
gene expression alterations that distinguish these tumour types.
Cross-species analysis identified the NK2-related homeobox transcription
factor Nkx2-1 (also called Ttf-1 or Titf1) as a candidate
suppressor of malignant progression. In this mouse model, Nkx2-1
negativity is pathognomonic of high-grade poorly differentiated
tumours. Gain- and loss-of-function experiments in cells derived
from metastatic and non-metastatic tumours demonstrated that
Nkx2-1 controls tumour differentiation and limitsmetastatic potential
in vivo. Interrogation of Nkx2-1-regulated genes, analysis of
tumours at defined developmental stages, and functional complementation
experiments indicate that Nkx2-1 constrains tumours in
part by repressing the embryonically restricted chromatin regulator
Hmga2. Whereas focal amplification of NKX2-1 in a fraction of
human lung adenocarcinomas has focused attention on its oncogenic
function, our data specifically link Nkx2-1 downregulation
to loss of differentiation, enhanced tumour seeding ability and
increased metastatic proclivity. Thus, the oncogenic and suppressive
functions ofNkx2-1 in the sametumourNational Institutes of Health (U.S.) (grant U01-CA84306 )National Institutes of Health (U.S.) (grant K99-CA151968)Howard Hughes Medical InstituteLudwig Center for Molecular OncologyNational Cancer Institute (U.S.) (Cancer Center Support (core) grant P30-CA14051
Programmed cell death and its role in inflammation
Cell death plays an important role in the regulation of inflammation and may be the result of inflammation. The maintenance of tissue homeostasis necessitates both the recognition and removal of invading microbial pathogens as well as the clearance of dying cells. In the past few decades, emerging knowledge on cell death and inflammation has enriched our molecular understanding of the signaling pathways that mediate various programs of cell death and multiple types of inflammatory responses. This review provides an overview of the major types of cell death related to inflammation. Modification of cell death pathways is likely to be a logical therapeutic target for inflammatory diseases