24,903 research outputs found

    Design of ternary signals for MIMO identification in the presence of noise and nonlinear distortion

    Get PDF
    A new approach to designing sets of ternary periodic signals with different periods for multi-input multi-output system identification is described. The signals are pseudo-random signals with uniform nonzero harmonics, generated from Galois field GF(q), where q is a prime or a power of a prime. The signals are designed to be uncorrelated, so that effects of different inputs can be easily decoupled. However, correlated harmonics can be included if necessary, for applications in the identification of ill-conditioned processes. A design table is given for q les 31. An example is presented for the design of five uncorrelated signals with a common period N = 168 . Three of these signals are applied to identify the transfer function matrix as well as the singular values of a simulated distillation column. Results obtained are compared with those achieved using two alternative methods

    Photometry, spectrophotometry and polarimetry of comet P/Encke during fall of 1979

    Get PDF
    Broadband S-20, B and V magnitudes of P/Encke were obtained with the digital area photometer, using an Image Dissector Scanner (IDS) detector on the 2.7 m telescope at McDonald Observatory during August 1979. The notation V(S-20) is used for S-20 magnitudes transformed to V magnitudes. The variation in the V(S20) magnitudes (26, 5 minute integrations) on the best photometric night (21 August) was small and random indicating either a lack of rotational albedo variations or, more likely, a masking of the nucleus by the outburst activity. A spectrum covering the region from 3630 to 4900 A at a resolution of 5 A was obtained on 27 August with the IDS spectrograph. The spectrum was featureless, showing no emission at the CN or CO+ wavelengths

    Studies in matter antimatter separation and in the origin of lunar magnetism

    Get PDF
    Antimatter experiments of the University of Santa Clara are investigated. Topics reported include: (1) planetary geology, (2) lunar Apollo magnetometer experiments, and (3) Roche limit of a solid body

    Testing collapse models with levitated nanoparticles: the detection challenge

    Get PDF
    We consider a nanoparticle levitated in a Paul trap in ultrahigh cryogenic vacuum, and look for the conditions which allow for a stringent noninterferometric test of spontaneous collapse models. In particular we compare different possible techniques to detect the particle motion. Key conditions which need to be achieved are extremely low residual pressure and the ability to detect the particle at ultralow power. We compare three different detection approaches based respectively on a optical cavity, optical tweezer and a electrical readout, and for each one we assess advantages, drawbacks and technical challenges

    An Alternative Parameterization of R-matrix Theory

    Get PDF
    An alternative parameterization of R-matrix theory is presented which is mathematically equivalent to the standard approach, but possesses features which simplify the fitting of experimental data. In particular there are no level shifts and no boundary-condition constants which allows the positions and partial widths of an arbitrary number levels to be easily fixed in an analysis. These alternative parameters can be converted to standard R-matrix parameters by a straightforward matrix diagonalization procedure. In addition it is possible to express the collision matrix directly in terms of the alternative parameters.Comment: 8 pages; accepted for publication in Phys. Rev. C; expanded Sec. IV, added Sec. VI, added Appendix, corrected typo

    The structure of the hard sphere solid

    Full text link
    We show that near densest-packing the perturbations of the HCP structure yield higher entropy than perturbations of any other densest packing. The difference between the various structures shows up in the correlations between motions of nearest neighbors. In the HCP structure random motion of each sphere impinges slightly less on the motion of its nearest neighbors than in the other structures.Comment: For related papers see: http://www.ma.utexas.edu/users/radin/papers.htm

    Application of energy and angular momentum balance to gravitational radiation reaction for binary systems with spin-orbit coupling

    Full text link
    We study gravitational radiation reaction in the equations of motion for binary systems with spin-orbit coupling, at order (v/c)^7 beyond Newtonian gravity, or O(v/c)^2 beyond the leading radiation reaction effects for non-spinning bodies. We use expressions for the energy and angular momentum flux at infinity that include spin-orbit corrections, together with an assumption of energy and angular momentum balance, to derive equations of motion that are valid for general orbits and for a class of coordinate gauges. We show that the equations of motion are compatible with those derived earlier by a direct calculation.Comment: 12 pages, submitted to General Relativity and Gravitatio

    Studies in matter antimatter separation and in the origin of lunar magnetism

    Get PDF
    A progress report, covering lunar and planetary research is introduced. Data cover lunar ionospheric models, lunar and planetary geology, and lunar magnetism. Wind tunnel simulations of Mars aeolian problems and a comparative study of basaltic analogs of Lunar and Martial volcanic features was discussed

    The Lennard-Jones-Devonshire cell model revisited

    Full text link
    We reanalyse the cell theory of Lennard-Jones and Devonshire and find that in addition to the critical point originally reported for the 12-6 potential (and widely quoted in standard textbooks), the model exhibits a further critical point. We show that the latter is actually a more appropriate candidate for liquid-gas criticality than the original critical point.Comment: 5 pages, 3 figures, submitted to Mol. Phy
    corecore