60 research outputs found

    Microstructure and magnetization of Y-Ba-Cu-O prepared by melt quenching, partial melting and doping

    Get PDF
    Y-Ba-Cu-O samples prepared by means of a variety of melt-based techniques exhibit high values for their magnetic properties compared with those of samples prepared by solid state sintering. These techniques include single-stage partial melting as well as melt quenching followed by a second heat treatment stage, and they have been applied to the stoichiometric 123 composition as well as to formulations containing excess yttrium or other dopants. The structure of these melt-based samples is highly aligned, and the magnetization readings exhibit large anisotropy. At 77 K and magnetic field intensities of about 2 kOe, diamagnetic susceptibilities as high as -14 x 10(exp -3) emu/g were obtained in the cases of melt-quenched samples and remanent magnetization values as high as 10 emu/g for samples prepared by partial melting

    Microstructure and magnetization of doped Y-Ba-Ca-O materials prepared by melt quench and post annealing method

    Get PDF
    Y-Ba-Cu-O bulk materials prepared using the melt quench and post annealing method were shown to have very high maximum as well as remanent magnetization. Studies were carried out on materials prepared using this method which deviate from the Y:Ba:Cu = 1:2:3 stoichiometry. In one series of materials, only the stoichiometry was changed, in particular by introducing an excess of yttrium. In other cases, dopants including several rare earths were introduced. Effects of variations in composition on microstructure and phase evolution are discussed, as well as effects on the magnetic susceptibility and on the magnetization. The results show that doped materials can exhibit improvements in magnetic properties. Furthermore, the use of dopants sheds light on the role of defect sites in flux pinning

    Correlation Between Structural Stability and Water-Durability of High-Tc Superconductors

    No full text
    corecore