5 research outputs found

    STAT3 mutation impacts biological and clinical features of T-LGL leukemia

    Get PDF
    STAT3 mutations have been described in 30-40% of T-large granular lymphocyte (T-LGL) leukemia patients, leading to STAT3 pathway activation. Considering the heterogeneity of the disease and the several immunophenotypes that LGL clone may express, the aim of this work was to evaluate whether STAT3 mutations might be associated with a distinctive LGL immunophenotype and/or might be indicative for specific clinical features.Our series of cases included a pilot cohort of 101 T-LGL leukemia patients (68 CD8+/CD4- and 33 CD4+/CD8\ub1) from Padua Hematology Unit (Italy) and a validation cohort of additional 20 patients from Rennes Hematology Unit (France).Our results indicate that i) CD8+ T-LGL leukemia patients with CD16+/CD56- immunophenotype identify a subset of patients characterized by the presence of STAT3 mutations and neutropenia, ii) CD4+/CD8\ub1 T-LGL leukemia are devoid of STAT3 mutations but characterized by STAT5b mutations, and iii) a correlation exists between STAT3 activation and presence of Fas ligand, this molecule resulting highly expressed in CD8+/CD16+/CD56- patients. Experiments with stimulation and inhibition of STAT3 phosphorylation confirmed this relationship. In conclusion, our data show that T-LGL leukemia with specific molecular and phenotypic patterns is associated with discrete clinical features contributing to get insights into molecular bases accounting for the development of Fas ligand-mediated neutropenia

    A high definition picture of somatic mutations in chronic lymphoproliferative disorder of natural killer cells

    Get PDF
    The molecular pathogenesis of chronic lymphoproliferative disorder of natural killer (NK) cells (CLPD-NK) is poorly understood. Following the screening of 57 CLPD-NK patients, only five presented STAT3 mutations. WES profiling of 13 cases negative for STAT3/STAT5B mutations uncovered an average of 18 clonal, population rare and deleterious somatic variants per patient. The mutational landscape of CLPD-NK showed that most patients carry a heavy mutational burden, with major and subclonal deleterious mutations co-existing in the leukemic clone. Somatic mutations hit genes wired to cancer proliferation, survival, and migration pathways, in the first place Ras/MAPK, PI3K-AKT, in addition to JAK/STAT (PIK3R1 and PTK2). We confirmed variants with putative driver role of MAP10, MPZL1, RPS6KA1, SETD1B, TAOK2, TMEM127, and TNFRSF1A genes, and of genes linked to viral infections (DDX3X and RSF1) and DNA repair (PAXIP1). A truncating mutation of the epigenetic regulator TET2 and a variant likely abrogating PIK3R1-negative regulatory activity were validated. This study significantly furthered the view of the genes and pathways involved in CLPD-NK, indicated similarities with aggressive diseases of NK cells and detected mutated genes targetable by approved drugs, being a step forward to personalized precision medicine for CLPD-NK patients.Peer reviewe

    Identification of novel STAT5B mutations and characterization of TCR beta signatures in CD4+T-cell large granular lymphocyte leukemia

    Get PDF
    CD4+ T-cell large granular lymphocyte leukemia (T-LGLL) is a rare subtype of T-LGLL with unknown etiology. In this study, we molecularly characterized a cohort of patients (n = 35) by studying their T-cell receptor (TCR) repertoire and the presence of somatic STAT5B mutations. In addition to the previously described gain-of-function mutations (N642H, Y665F, Q706L, S715F), we discovered six novel STAT5B mutations (Q220H, E433K, T628S, P658R, P702A, and V712E). Multiple STAT5B mutations were present in 22% (5/23) of STAT5B mutated CD4+ T-LGLL cases, either coexisting in one clone or in distinct clones. Patients with STAT5B mutations had increased lymphocyte and LGL counts when compared to STAT5B wild-type patients. TCR beta sequencing showed that, in addition to large LGL expansions, non-leukemic T cell repertoires were more clonal in CD4+ T-LGLL compared to healthy. Interestingly, 25% (15/59) of CD4+ T-LGLL clonotypes were found, albeit in much lower frequencies, in the non-leukemic CD4+ T cell repertoires of the CD4+ T-LGLL patients. Additionally, we further confirmed the previously reported clonal dominance of TRBV6-expressing clones in CD4+ T-LGLL. In conclusion, CD4+ T-LGLL patients have a typical TCR and mutation profile suggestive of aberrant antigen response underlying the disease.Peer reviewe

    Inactivation of CK1\u3b1 in multiple myeloma empowers drug cytotoxicity by affecting AKT and f-catenin survival signaling pathways

    Get PDF
    Recent evidence indicates that protein kinase CK1\u3b1 may support the growth of multiple myeloma (MM) plasma cells. Here, by analyzing a large cohort of MM cases, we found that high CK1\u3b1 mRNA levels are virtually associated with all MM patients. Moreover, we provided functional evidence that CK1\u3b1 activity is essential for malignant plasma cell survival even in the protective niche generated by co-cultures with bone marrow stromal cells. We demonstrated that CK1\u3b1 inactivation, while toxic for myeloma cells, is dispensable for the survival of healthy B lymphocytes and stromal cells. Disruption of CK1\u3b1 function in myeloma cells resulted in decreased Mdm2, increased p53 and p21 and reduced expression of \u3b2-catenin and AKT. These effects were mediated partially by p53 and caspase activity. Finally, we discovered that CK1\u3b1 inactivation enhanced the cytotoxic effect of both bortezomib and lenalidomide. Overall, our study supports a role for CK1\u3b1 as a potential therapeutic target in MM in combination with proteasome inhibitors and/or immunomodulatory drugs
    corecore