380 research outputs found

    Quantum Computation of a Complex System : the Kicked Harper Model

    Full text link
    The simulation of complex quantum systems on a quantum computer is studied, taking the kicked Harper model as an example. This well-studied system has a rich variety of dynamical behavior depending on parameters, displays interesting phenomena such as fractal spectra, mixed phase space, dynamical localization, anomalous diffusion, or partial delocalization, and can describe electrons in a magnetic field. Three different quantum algorithms are presented and analyzed, enabling to simulate efficiently the evolution operator of this system with different precision using different resources. Depending on the parameters chosen, the system is near-integrable, localized, or partially delocalized. In each case we identify transport or spectral quantities which can be obtained more efficiently on a quantum computer than on a classical one. In most cases, a polynomial gain compared to classical algorithms is obtained, which can be quadratic or less depending on the parameter regime. We also present the effects of static imperfections on the quantities selected, and show that depending on the regime of parameters, very different behaviors are observed. Some quantities can be obtained reliably with moderate levels of imperfection, whereas others are exponentially sensitive to imperfection strength. In particular, the imperfection threshold for delocalization becomes exponentially small in the partially delocalized regime. Our results show that interesting behavior can be observed with as little as 7-8 qubits, and can be reliably measured in presence of moderate levels of internal imperfections

    Two interacting Hofstadter butterflies

    Full text link
    The problem of two interacting particles in a quasiperiodic potential is addressed. Using analytical and numerical methods, we explore the spectral properties and eigenstates structure from the weak to the strong interaction case. More precisely, a semiclassical approach based on non commutative geometry techniques permits to understand the intricate structure of such a spectrum. An interaction induced localization effect is furthermore emphasized. We discuss the application of our results on a two-dimensional model of two particles in a uniform magnetic field with on-site interaction.Comment: revtex, 12 pages, 11 figure

    Reactive Metals as Energy Storage and Carrier Media: Use of Aluminum for Power Generation in Fuel Cell-Based Power Plants

    Get PDF
    In recent years, the energy production sector has experienced a growing interest in new energy vectors enabling energy storage and, at the same time, intersectoral energy applications among users. Hydrogen is one of the most promising energy storage and carrier media featuring a very high gravimetric energy density, but a rather low volumetric energy density. To this regard, this study focuses on the use of aluminum as energy storage and carrier medium, offering high volumetric energy density (23.5 kWh L1^{-1}), ease to transport and stock (e.g., as ingots), and is neither toxic nor dangerous when stored. In addition, mature production and recycling technologies exist for aluminum. Herein, the performance of power systems driven by aluminum powder in terms of electrical efficiency (η(I)_{(I)}) and round‐trip efficiency (RTE) is analyzed. Along with the additional advantages relating to high volumetric energy density, and safety and management aspects, the aluminum‐based technology appears to outperform the power‐to‐power systems based on hydrogen and liquid fuels

    Levantamento sobre genótipos de mandioca utilizados pelos agricultores de pequena escala, na baixada cuiabana, MT

    Get PDF
    Foi realizado um levantamento sobre os genótipos de mandioca utilizados pelos agricultores na Baixada Cuiabana, região que compreende 14 municípios entorno de Cuiabá, composto de muitos agricultores tradicionais. O MT é um dos centros de origem e diversificação da Manihot esculenta, sendo essa região detentora de uma grande tradição de produção de farinha, devido ao alto consumo pela sua culinária regional. A agricultura familiar desempenha papel fundamental na diversidade de plantas, representando uma forma importante de conservação in situ. Foi aplicado um questionário para os técnicos da EMPAER (Empresa Extensão Rural do Mato Grosso) que atuam na região para identificar os genótipos de mandioca de mesa e de indústria. Foram citados 11, todos eles crioulos os quais foram: ?Igarapé Vermelha?, ?Liberata?, ?Sopão?, ?Juriti?, ?Broto branco?, ?Mansa?, ?Broto roxo?, ?Cacau?, ?Uva?, ?Galhadeira? e ?Olho junto?. Não foram mencionados genótipos melhorados, como da Embrapa ou IAC. Os genótipos ?Liberata? e ?Juriti? foram citados tanto para consumo em mesa, como para indústria na fabricação de farinha, indicando dupla aptidão. Porém, ?Liberata? foi o mais mencionado, sendo citados por técnicos de todos os municípios. Os agricultores tradicionais dessa região são mantenedores da diversidade local

    Self-Organized Nanorod Arrays for Large-Area Surface-Enhanced Infrared Absorption

    Get PDF
    Capabilities of highly sensitive surface-enhanced infrared absorption (SEIRA) spectroscopy are demonstrated by exploiting large-area templates (cm2) based on self-organized (SO) nanorod antennas. We engineered highly dense arrays of gold nanorod antennas featuring polarization-sensitive localized plasmon resonances, tunable over a broadband near- and mid-infrared (IR) spectrum, in overlap with the so-called "functional group" window. We demonstrate polarization-sensitive SEIRA activity, homogeneous over macroscopic areas and stable in time, by exploiting prototype self-assembled monolayers of IR-active octadecanthiol (ODT) molecules. The strong coupling between the plasmonic excitation and molecular stretching modes gives rise to characteristic Fano resonances in SEIRA. The SO engineering of the active hotspots in the arrays allows us to achieve signal amplitude improved up to 5.7%. This figure is competitive to the response of lithographic nanoantennas and is stable when the optical excitation spot varies from the micro- to macroscale, thus enabling highly sensitive SEIRA spectroscopy with cost-effective nanosensor devices

    Experimental investigation of SO2 poisoning in a Molten Carbonate Fuel Cell operating in CCS configuration

    Full text link
    [EN] One of the most interesting innovations in the CCS (Carbon Capture and Storage) field is the use of MCFCs as carbon dioxide concentrators, feeding their cathode side (or air side) with the exhaust gas of a traditional power plant. The feasibility of this kind of application depends on the resistance of the MCFC to air-side contaminants, with particular attention to SO2. The aim of this work is to investigate the effects of poisoning when sulphur dioxide is added to the cathodic stream in various concentrations and in different operating conditions. This study was carried out operating single cells (80 cm(2)) with a cathodic feeding composition simulating typical flue gas conditions, i.e. N-2, H2O, O-2 and CO2 in 73:9:12:6 mol ratio as reference mixture. On the anodic side a base composition was chosen with H-2, CO2 and H2O in 64:16:20 mol ratio. Starting from these reference mixtures, the effect of single species on cell poisoning was experimentally investigated considering, as main parameters chosen for the sensitivity analysis, SO2 (0-24 ppm) and CO2 (4-12%) content in the cathodic feeding mixture, H-2 (40-64%) content in the anodic stream as well as the operating temperature (620-680 degrees C). Results showed that degradation caused by SO2 poisoning is strongly affected by the operating conditions. Data gathered during this experimental campaign will be used in a future work to model the poisoning mechanisms through the definition of MCFC electrochemical kinetics which take into account the SO2 effects. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.The work was partly supported by H2FC European Infrastructure Project (Integrating European Infrastructure to support science and development of Hydrogen and Fuel Cell Technologies towards European Strategy for Sustain-able Competitive and Secure Energy) Theme [INFRA-2011-1.1.16.], Grant agreement 284522.Della Pietra, M.; Discepoli, G.; Bosio, B.; Mcphail, S.; Barelli, L.; Bidini, G.; Ribes-Greus, A. (2016). Experimental investigation of SO2 poisoning in a Molten Carbonate Fuel Cell operating in CCS configuration. International Journal of Hydrogen Energy. 41(41):18822-18836. https://doi.org/10.1016/j.ijhydene.2016.05.147S1882218836414

    Double butterfly spectrum for two interacting particles in the Harper model

    Full text link
    We study the effect of interparticle interaction UU on the spectrum of the Harper model and show that it leads to a pure-point component arising from the multifractal spectrum of non interacting problem. Our numerical studies allow to understand the global structure of the spectrum. Analytical approach developed permits to understand the origin of localized states in the limit of strong interaction UU and fine spectral structure for small UU.Comment: revtex, 4 pages, 5 figure
    corecore