5,728 research outputs found
Experimental demonstration of evanescent coupling from optical fibre tapers to photonic crystal waveguides
Experimental results demonstrating nearly complete mode-selective evanescent coupling to a photonic crystal waveguide from an optical fibre taper are presented. Codirectional coupling with 98% maximum power transfer to a photonic crystal waveguide of length 65 μm and with a coupling bandwidth of 20 nm is realised
Optomechanically induced transparency and cooling in thermally stable diamond microcavities
Diamond cavity optomechanical devices hold great promise for quantum
technology based on coherent coupling between photons, phonons and spins. These
devices benefit from the exceptional physical properties of diamond, including
its low mechanical dissipation and optical absorption. However the nanoscale
dimensions and mechanical isolation of these devices can make them susceptible
to thermo-optic instability when operating at the high intracavity field
strengths needed to realize coherent photon--phonon coupling. In this work, we
overcome these effects through engineering of the device geometry, enabling
operation with large photon numbers in a previously thermally unstable regime
of red-detuning. We demonstrate optomechanically induced transparency with
cooperativity > 1 and normal mode cooling from 300 K to 60 K, and predict that
these device will enable coherent optomechanical manipulation of diamond spin
systems
Single-crystal diamond low-dissipation cavity optomechanics
Single-crystal diamond cavity optomechanical devices are a promising example
of a hybrid quantum system: by coupling mechanical resonances to both light and
electron spins, they can enable new ways for photons to control solid state
qubits. However, realizing cavity optomechanical devices from high quality
diamond chips has been an outstanding challenge. Here we demonstrate
single-crystal diamond cavity optomechanical devices that can enable
photon-phonon-spin coupling. Cavity optomechanical coupling to
frequency () mechanical resonances is observed. In room temperature
ambient conditions, these resonances have a record combination of low
dissipation (mechanical quality factor, ) and high
frequency, with sufficient
for room temperature single phonon coherence. The system exhibits high optical
quality factor () resonances at infrared and visible
wavelengths, is nearly sideband resolved, and exhibits optomechanical
cooperativity . The devices' potential for optomechanical control of
diamond electron spins is demonstrated through radiation pressure excitation of
mechanical self-oscillations whose 31 pm amplitude is predicted to provide 0.6
MHz coupling rates to diamond nitrogen vacancy center ground state transitions
(6 Hz / phonon), and stronger coupling rates to excited state
transitions.Comment: 12 pages, 5 figure
Exploring the trade-off between quality and fairness in human partner choice
Partner choice is an important force underpinning cooperation in humans and other animals. Nevertheless, the mechanisms individuals use to evaluate and discriminate among partners who vary across different dimensions are poorly understood. Generally, individuals are expected to prefer partners who are both able and willing to invest in cooperation but how do individuals prioritize the ability over willingness to invest when these characteristics are opposed to one another? We used a modified Dictator Game to tackle this question. Choosers evaluated partners varying in quality (proxied by wealth) and fairness, in conditions when wealth was relatively stable or liable to change. When both partners were equally fair (or unfair), choosers typically preferred the richer partner. Nevertheless, when asked to choose between a rich-stingy and a poor-fair partner, choosers prioritized fairness over wealth—with this preference being particularly pronounced when wealth was unstable. The implications of these findings for real-world partner choice are discussed
Conversion of neutral nitrogen-vacancy centers to negatively-charged nitrogen-vacancy centers through selective oxidation
The conversion of neutral nitrogen-vacancy centers to negatively charged
nitrogen-vacancy centers is demonstrated for centers created by ion
implantation and annealing in high-purity diamond. Conversion occurs with
surface exposure to an oxygen atmosphere at 465 C. The spectral properties of
the charge-converted centers are investigated. Charge state control of
nitrogen-vacancy centers close to the diamond surface is an important step
toward the integration of these centers into devices for quantum information
and magnetic sensing applications.Comment: 4 pages, 3 figure
The influence of pre-experimental experience on social discrimination in rats (Rattus norvegicus)
The authors used laboratory rats (Rattus norvegicus) of known relatedness and contrasting familiarity to assess the potential effect of preexperimental social experience on subsequent social recognition. The authors used the habituation-discrimination technique, which assumes that multiple exposures to a social stimulus (e.g., soiled bedding) ensure a subject discriminates between the habituation stimulus and a novel stimulus when both are introduced simultaneously. The authors observed a strong discrimination if the subjects had different amounts of preexperimental experience with the donors of the 2 stimuli but a weak discrimination if the subjects had either equal amounts of preexperimental experience or no experience with the stimuli. Preexperimental social experience does, therefore, appear to influence decision making in subsequent social discriminations. Implications for recognition and memory research are discussed
NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 19: Computer and information technology and aerospace knowledge diffusion
To remain a world leader in aerospace, the US must improve and maintain the professional competency of its engineers and scientists, increase the research and development (R&D) knowledge base, improve productivity, and maximize the integration of recent technological developments into the R&D process. How well these objectives are met, and at what cost, depends on a variety of factors, but largely on the ability of US aerospace engineers and scientists to acquire and process the results of federally funded R&D. The Federal Government's commitment to high speed computing and networking systems presupposes that computer and information technology will play a major role in the aerospace knowledge diffusion process. However, we know little about information technology needs, uses, and problems within the aerospace knowledge diffusion process. The use of computer and information technology by US aerospace engineers and scientists in academia, government, and industry is reported
The Importance of Organizational Considerations for the Implementation of Information Technology
Many companies introducing information technology, in any form, can experience problems because the organizational aspects of introducing such technology have not received their due consideration. The paper will firstly review the various aspects to be considered, and then discusses the results of research work undertaken in companies in the UK and Japan, to compare and contrast the differing approaches of these two countries to technology implementation
- …