18,212 research outputs found

    Optimal Axes of Siberian Snakes for Polarized Proton Acceleration

    Full text link
    Accelerating polarized proton beams and storing them for many turns can lead to a loss of polarization when accelerating through energies where a spin rotation frequency is in resonance with orbit oscillation frequencies. First-order resonance effects can be avoided by installing Siberian Snakes in the ring, devices which rotate the spin by 180 degrees around the snake axis while not changing the beam's orbit significantly. For large rings, several Siberian Snakes are required. Here a criterion will be derived that allows to find an optimal choice of the snake axes. Rings with super-period four are analyzed in detail, and the HERA proton ring is used as an example for approximate four-fold symmetry. The proposed arrangement of Siberian Snakes matches their effects so that all spin-orbit coupling integrals vanish at all energies and therefore there is no first-order spin-orbit coupling at all for this choice, which I call snakes matching. It will be shown that in general at least eight Siberian Snakes are needed and that there are exactly four possibilities to arrange their axes. When the betatron phase advance between snakes is chosen suitably, four Siberian Snakes can be sufficient. To show that favorable choice of snakes have been found, polarized protons are tracked for part of HERA-p's acceleration cycle which shows that polarization is preserved best for the here proposed arrangement of Siberian Snakes.Comment: 14 pages, 16 figure

    Tridyne attitude control thruster investigation Final report

    Get PDF
    Experimental results of feasibility Tridyne attitude control thruste

    Improved fiberglass-to-metal joint produces lighter stronger fiberglass strut

    Get PDF
    Axial tension and compression are transmitted between end fittings and fiberglass tube without depending on glass-to-metal bonding, conventional fasteners or combination of these things. Joint design significantly reduces both structural weight of strut and its cross-sectional area

    Three Dimensional Electrical Impedance Tomography

    Get PDF
    The electrical resistivity of mammalian tissues varies widely and is correlated with physiological function. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body. But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem. This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane. A few studies have attempted three-dimensional EIT image reconstruction, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening

    Bending and Breathing Modes of the Galactic Disk

    Full text link
    We explore the hypothesis that a passing satellite or dark matter subhalo has excited coherent oscillations of the Milky Way's stellar disk in the direction perpendicular to the Galactic midplane. This work is motivated by recent observations of spatially dependent bulk vertical motions within ~ kpc of the Sun. A satellite can transfer a fraction of its orbital energy to the disk stars as it plunges through the Galactic midplane thereby heating and thickening the disk. Bulk motions arise during the early stages of such an event when the disk is still in an unrelaxed state. We present simple toy-model calculations and simulations of disk-satellite interactions, which show that the response of the disk depends on the relative velocity of the satellite. When the component of the satellite's velocity perpendicular to the disk is small compared with that of the stars, the perturbation is predominantly a bending mode. Conversely, breathing and higher order modes are excited when the vertical velocity of the satellite is larger than that of the stars. We argue that the compression and rarefaction motions seen in three different surveys are in fact breathing mode perturbations of the Galactic disk.Comment: 12 pages, 12 figure

    Hierarchical Wigner Crystal at the Edge of Quantum Hall Bar

    Full text link
    We show that quasiholes persist near the edge of incompressible Quantum Hall state forming a Wigner structure. The average density of quasiholes is fixed by electrostatics and decreases slowly with increasing distance from the edge. As we see from elementary reasoning, their specific arrangement can not be a regular Wigner lattice and shows a complex hierarchical structure of dislocations.Comment: LaTEX file. Ps figures upon reques
    • …
    corecore