1,108 research outputs found

    Cosmic Ray acceleration and Balmer emission from SNR 0509-67.5

    Full text link
    Context: Observation of Balmer lines from the region around the forward shock of supernova remnants may provide precious information on the shock dynamics and on the efficiency of particle acceleration at the shock. Aims: We calculate the Balmer line emission and the shape of the broad Balmer line for parameter values suitable for SNR 0509-67.5, as a function of the cosmic ray acceleration efficiency and of the level of thermal equilibration between electrons and protons behind the shock. This calculation aims at using the width of the broad Balmer line emission to infer the cosmic ray acceleration efficiency in this remnant. Methods: We use the recently developed non-linear theory of diffusive shock acceleration in the presence of neutrals. The semi-analytical approach that we developed includes a description of magnetic field amplification as due to resonant streaming instability, the dynamical reaction of both accelerated particles and turbulent magnetic field on the shock, and all channels of interaction between neutral atoms and background plasma that change the shock dynamics. Results: We achieve a quantitative assessment of the CR acceleration efficiency in SNR 0509-67.5 as a function of the shock velocity and different levels of electron-proton thermalization in the shock region. If the shock moves faster than ~4500 km/s, one can conclude that particle acceleration must be taking place with efficiency of several tens of percent. For lower shock velocity the evidence for particle acceleration becomes less clear because of the uncertainty in the electron-ion equilibration downstream. We also discuss the role of future measurements of the narrow Balmer line.Comment: 7 pages, 5 figure. Accepted for publication in Astronomy & Astrophysic

    Broad Balmer line emission and cosmic ray acceleration efficiency in supernova remnant shocks

    Full text link
    Balmer emission may be a powerful diagnostic tool to test the paradigm of cosmic ray (CR) acceleration in young supernova remnant (SNR) shocks. The width of the broad Balmer line is a direct indicator of the downstream plasma temperature. In case of efficient particle acceleration an appreciable fraction of the total kinetic energy of the plasma is channeled into CRs, therefore the downstream temperature decreases and so does the broad Balmer line width. This width also depends on the level of thermal equilibration between ions and neutral hydrogen atoms in the downstream. Since in general in young SNR shocks only a few charge exchange (CE) reactions occur before ionization, equilibration between ions and neutrals is not reached, and a kinetic description of the neutrals is required in order to properly compute Balmer emission. We provide a method for the calculation of Balmer emission using a self-consistent description of the shock structure in the presence of neutrals and CRs. We use a recently developed semi-analytical approach, where neutral particles, ionized plasma, accelerated particles and magnetic fields are all coupled together through the mass, momentum and energy flux conservation equations. The distribution of neutrals is obtained from the full Boltzmann equation in velocity space, coupled to Maxwellian ions through ionization and CE processes. The computation is also improved with respect to previous work thanks to a better approximation for the atomic interaction rates. We find that for shock speeds >2500km/s the distribution of broad neutrals never approaches a Maxwellian and its moments differ from those of the ionized component. These differences reflect into a smaller FWHM than predicted in previous calculations, where thermalization was assumed. The method presented here provides a realistic estimate of particle acceleration efficiency in Balmer dominated shocks.Comment: 6 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic

    Cosmic Ray acceleration and Balmer emission from RCW 86 (G315.4-2.3)

    Get PDF
    Context. Observation of Balmer lines from the region around the forward shock of supernova remnants (SNR) may provide valuable information on the shock dynamics and the efficiency of particle acceleration at the shock. Aims. We calculated the Balmer line emission and the shape of the broad Balmer line for parameter values suitable for SNR RCW 86 (G315.4-2.3) as a function of the cosmic-ray (CR) acceleration efficiency and of the level of thermal equilibration between electrons and protons behind the shock. This calculation aims at using the width of the broad Balmer-line emission to infer the CR acceleration efficiency in this remnant. Methods. We used the recently developed nonlinear theory of diffusive shock-acceleration in the presence of neutrals. The semianalytical approach we developed includes a description of magnetic field amplification as due to resonant streaming instability, the dynamical reaction of accelerated particles and the turbulent magnetic field on the shock, and all channels of interaction between neutral hydrogen atoms and background ions that are relevant for the shock dynamics. Results. We derive the CR acceleration efficiency in the SNR RCW 86 from the Balmer emission. Since our calculation used recent measurements of the shock proper motion, the results depend on the assumed distance to Earth. For a distance of 2 kpc the measured width of the broad Balmer line is compatible with the absence of CR acceleration. For a distance of 2.5 kpc, which is a widely used value in current literature, a CR acceleration efficiency of 5-30% is obtained, depending upon the electron-ion equilibration and the ionization fraction upstream of the shock. By combining information on Balmer emission with the measured value of the downstream electron temperature, we constrain the CR acceleration efficiency to be ~20%.Comment: 7 pages, 6 figures. Accepted for publication in A&A (minor changes to match the published version

    Modeling Nonaxisymmetric Bow Shocks: Solution Method and Exact Analytic Solutions

    Get PDF
    A new solution method is presented for steady-state, momentum-conserving, non-axisymmetric bow shocks and colliding winds in the thin-shell limit. This is a generalization of previous formulations to include a density gradient in the pre-shock ambient medium, as well as anisotropy in the pre-shock wind. For cases where the wind is unaccelerated, the formalism yields exact, analytic solutions. Solutions are presented for two bow shock cases: (1) that due to a star moving supersonically with respect to an ambient medium with a density gradient perpendicular to the stellar velocity, and (2) that due to a star with a misaligned, axisymmetric wind moving in a uniform medium. It is also shown under quite general circumstances that the total rate of energy thermalization in the bow shock is independent of the details of the wind asymmetry, including the orientation of the non-axisymmetric driving wind, provided the wind is non-accelerating and point-symmetric. A typical feature of the solutions is that the region near the standoff point is tilted, so that the star does not lie along the bisector of a parabolic fit to the standoff region. The principal use of this work is to infer the origin of bow shock asymmetries, whether due to the wind or ambient medium, or both.Comment: 26 pages and 6 figures accepted to ap

    Comment on “Collisionless shock and supernova remnant simulations on VULCAN” [Phys. Plasmas 8, 2439 (2001)]

    Full text link
    This recent paper reports some real advances in experimental technique, but is misleading or incorrect in several places. First, the design assumes without discussion that the magnetic field will completely penetrate the plasma, but this is not likely. Second, when the magnetic field is present the surfaces of the converging plasmas will be Rayleigh–Taylor unstable. Third, any shocks produced in experiments like those reported may be collisionless but have no relevance to shocks in supernova remnants. Fourth, the experiment is not a meaningful hydrodynamic simulation of a supernova remnant. Finally, the hydrodynamic simulation results reported are also in error, leading to incorrect values for some scaling parameters. © 2002 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69649/2/PHPAEN-9-2-727-1.pd

    The Pulsar B2224+65 and Its Jets: A Two Epoch X-ray Analysis

    Get PDF
    We present an X-ray morphological and spectroscopic study of the pulsar B2224+65 and its apparent jet-like X-ray features based on two epoch Chandra observations. The main X-ray feature, which shows a large directional offset from the ram-pressure confined pulsar wind nebula (Guitar Nebula), is broader in apparent width and shows evidence for spectral hardening (at 95 percent confidence) in the second epoch compared to the first. Furthermore, the sharp leading edge of the feature is found to have a proper motion consistent with that of the pulsar (~180 mas yr-1). The combined data set also provides evidence for the presence of a counter feature, albeit substantially fainter and shorter than the main one. Additional spectral trends along the major and minor axes of the feature are only marginally detected in the two epoch data, including softening counter to the direction of proper motion. Possible explanations for the X-ray features include diffuse energetic particles being confined by an organized ambient magnetic field as well as a simple ballistic jet interpretation; however, the former may have difficulty in explaining observed spectral trends between epochs and along the feature's major axis whereas the latter may struggle to elucidate its linearity. Given the low counting statistics available in the two epoch observations, it remains difficult to determine a physical production scenario for these enigmatic X-ray emitting features with any certainty.Comment: 9 pages, 6 figures, submitted to MNRAS; updated as per reviewer comment

    A novel ultrafast-low-dose computed tomography protocol allows concomitant coronary artery evaluation and lung cancer screening

    Get PDF
    BACKGROUND:Cardiac computed tomography (CT) is often performed in patients who are at high risk for lung cancer in whom screening is currently recommended. We tested diagnostic ability and radiation exposure of a novel ultra-low-dose CT protocol that allows concomitant coronary artery evaluation and lung screening. METHODS: We studied 30 current or former heavy smoker subjects with suspected or known coronary artery disease who underwent CT assessment of both coronary arteries and thoracic area (Revolution CT, General Electric). A new ultrafast-low-dose single protocol was used for ECG-gated helical acquisition of the heart and the whole chest. A single IV iodine bolus (70-90 ml) was used. All patients with CT evidence of coronary stenosis underwent also invasive coronary angiography. RESULTS: All the coronary segments were assessable in 28/30 (93%) patients. Only 8 coronary segments were not assessable in 2 patients due to motion artefacts (assessability: 98%; 477/485 segments). In the assessable segments, 20/21 significant stenoses (> 70% reduction of vessel diameter) were correctly diagnosed. Pulmonary nodules were detected in 5 patients, thus requiring to schedule follow-up surveillance CT thorax. Effective dose was 1.3 ± 0.9 mSv (range: 0.8-3.2 mSv). Noteworthy, no contrast or radiation dose increment was required with the new protocol as compared to conventional coronary CT protocol. CONCLUSIONS:The novel ultrafast-low-dose CT protocol allows lung cancer screening at time of coronary artery evaluation. The new approach might enhance the cost-effectiveness of coronary CT in heavy smokers with suspected or known coronary artery disease

    Posterior arch defect of the atlas associated to absence of costal element of foramen transversarium from 16th century Sardinia (Italy)

    Get PDF
    Study Design. A paleopathological case of posterior arch defect of the atlas associated to the absence of costal element of the foramen transversarium. Objective. In living patients as well as in postmortem analysis it should be difficult to distinguish between a congenital and an acquired anomaly. Any anomaly in the anatomy of atlas should be taken into consideration by clinicians, surgeons, radiologists, and anatomists in order to avoid misinterpretations and clinical complications. Summary of Background Data. Posterior arch defect has a current occurrence of approximately 4%. Posterior arch schisis is attributed to the defective or absent development of the cartilaginous preformation of the arch rather than a disturbance of the ossification. The absence of costal element of the foramen transversarium has an incidence of ranging from 2% to 10% and is attributed to a developmental defect or to variations in the course of the vertebral artery. Methods. The skeleton of a man aged 20–30 years, brought to light in the plague cemetery of 16th century Alghero (Sardinia), showed anomalies of the atlas, consisting in failure of the midline fusion of the 2 hemiarches with a small gap and an open anterior foramen trasversarium on the left side. A macroscopic, radiological, and stereomicroscopic study was carried out. Results. The study allowed to rule out a traumatic origin of the defects and to diagnose an association of 2 congenital anomalies. Conclusion. Osteoarchaeological cases provides with a valuable opportunity to examine and describe variations in the anatomy of the atlas
    • …
    corecore