564 research outputs found
Research on optimization-based design
Research on optimization-based design is discussed. Illustrative examples are given for cases involving continuous optimization with discrete variables and optimization with tolerances. Approximation of computationally expensive and noisy functions, electromechanical actuator/control system design using decomposition and application of knowledge-based systems and optimization for the design of a valve anti-cavitation device are among the topics covered
Optimization of coupled systems: A critical overview of approaches
A unified overview is given of problem formulation approaches for the optimization of multidisciplinary coupled systems. The overview includes six fundamental approaches upon which a large number of variations may be made. Consistent approach names and a compact approach notation are given. The approaches are formulated to apply to general nonhierarchic systems. The approaches are compared both from a computational viewpoint and a managerial viewpoint. Opportunities for parallelism of both computation and manpower resources are discussed. Recommendations regarding the need for future research are advanced
An algorithm for solving the system-level problem in multilevel optimization
A multilevel optimization approach which is applicable to nonhierarchic coupled systems is presented. The approach includes a general treatment of design (or behavior) constraints and coupling constraints at the discipline level through the use of norms. Three different types of norms are examined: the max norm, the Kreisselmeier-Steinhauser (KS) norm, and the 1(sub p) norm. The max norm is recommended. The approach is demonstrated on a class of hub frame structures which simulate multidisciplinary systems. The max norm is shown to produce system-level constraint functions which are non-smooth. A cutting-plane algorithm is presented which adequately deals with the resulting corners in the constraint functions. The algorithm is tested on hub frames with increasing number of members (which simulate disciplines), and the results are summarized
Execution of Multidisciplinary Design Optimization Approaches on Common Test Problems
A class of synthetic problems for testing multidisciplinary design optimization (MDO) approaches is presented. These test problems are easy to reproduce because all functions are given as closed-form mathematical expressions. They are constructed in such a way that the optimal value of all variables and the objective is unity. The test problems involve three disciplines and allow the user to specify the number of design variables, state variables, coupling functions, design constraints, controlling design constraints, and the strength of coupling. Several MDO approaches were executed on two sample synthetic test problems. These approaches included single-level optimization approaches, collaborative optimization approaches, and concurrent subspace optimization approaches. Execution results are presented, and the robustness and efficiency of these approaches an evaluated for these sample problems
Electron affinity of Li: A state-selective measurement
We have investigated the threshold of photodetachment of Li^- leading to the
formation of the residual Li atom in the state. The excited residual
atom was selectively photoionized via an intermediate Rydberg state and the
resulting Li^+ ion was detected. A collinear laser-ion beam geometry enabled
both high resolution and sensitivity to be attained. We have demonstrated the
potential of this state selective photodetachment spectroscopic method by
improving the accuracy of Li electron affinity measurements an order of
magnitude. From a fit to the Wigner law in the threshold region, we obtained a
Li electron affinity of 0.618 049(20) eV.Comment: 5 pages,6 figures,22 reference
Recommended from our members
Laser Based Sub-Picosecond Electron Bunch Characterization Using 90° Thomson Scattering
One-dimensional Model of a Gamma Klystron
A new scheme for amplification of coherent gamma rays is proposed. The key
elements are crystalline undulators - single crystals with periodically bent
crystallographic planes exposed to a high energy beam of charged particles
undergoing channeling inside the crystals. The scheme consists of two such
crystals separated by a vacuum gap. The beam passes the crystals successively.
The particles perform undulator motion inside the crystals following the
periodic shape of the crystallographic planes. Gamma rays passing the crystals
parallel to the beam get amplified due to interaction with the particles inside
the crystals. The term `gamma klystron' is proposed for the scheme because its
operational principles are similar to those of the optical klystron. A more
simple one-crystal scheme is considered as well for the sake of comparison. It
is shown that the gamma ray amplification in the klystron scheme can be reached
at considerably lower particle densities than in the one-crystal scheme,
provided that the gap between the crystals is sufficiently large.Comment: RevTeX4, 22 pages, 4 figure
A new approach for the limit to tree height using a liquid nanolayer model
Liquids in contact with solids are submitted to intermolecular forces
inferring density gradients at the walls. The van der Waals forces make liquid
heterogeneous, the stress tensor is not any more spherical as in homogeneous
bulks and it is possible to obtain stable thin liquid films wetting vertical
walls up to altitudes that incompressible fluid models are not forecasting.
Application to micro tubes of xylem enables to understand why the ascent of sap
is possible for very high trees like sequoias or giant eucalyptus.Comment: In the conclusion is a complementary comment to the Continuum
Mechanics and Thermodynamics paper. 21 pages, 4 figures. Continuum Mechanics
and Thermodynamics 20, 5 (2008) to appea
States, Banks and the Financing of the Economy: Monetary Policy and Regulatory Perspectives
On 5-6 September 2012 SUERF held its 30th Colloquium “States, Banks, and the Financing of the Economy” at the University of Zürich, Switzerland. The papers included in this SUERF Study are based on contributions to the Colloquium. All the papers in this publication discuss from different angles the complex interrelations between states and financial systems, which have developed in recent years with economic, financial and sovereign debt crises. The contributions look primarily on the monetary policy and financial regulation and supervision perspectives. In the preceding SUERF Study (2013/2), the focus of the contributions also delivered at the 30th SUERF Colloquium is on fiscal policy and sovereign debt perspectives
A Multi-Level Optimization Algorithm and a Ship Design Application
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97130/1/AIAA2012-5555.pd
- …