837 research outputs found
On Two-Body Decays of A Scalar Glueball
We study two body decays of a scalar glueball. We show that in QCD a spin-0
pure glueball (a state only with gluons) cannot decay into a pair of light
quarks if chiral symmetry holds exactly, i.e., the decay amplitude is chirally
suppressed. However, this chiral suppression does not materialize itself at the
hadron level such as in decays into and , because in
perturbative QCD the glueball couples to two (but not one) light quark pairs
that hadronize to two mesons. Using QCD factorization based on an effective
Lagrangian, we show that the difference of hadronization into and
already leads to a large difference between and , even the decay amplitude is not chirally suppressed. Moreover,
the small ratio of of
measured in experiment does not imply to be a pure glueball. With
our results it is helpful to understand the partonic contents if or is measured reliably.Comment: revised versio
Biharmonic pattern selection
A new model to describe fractal growth is discussed which includes effects
due to long-range coupling between displacements . The model is based on the
biharmonic equation in two-dimensional isotropic defect-free
media as follows from the Kuramoto-Sivashinsky equation for pattern formation
-or, alternatively, from the theory of elasticity. As a difference with
Laplacian and Poisson growth models, in the new model the Laplacian of is
neither zero nor proportional to . Its discretization allows to reproduce a
transition from dense to multibranched growth at a point in which the growth
velocity exhibits a minimum similarly to what occurs within Poisson growth in
planar geometry. Furthermore, in circular geometry the transition point is
estimated for the simplest case from the relation
such that the trajectories become stable at the growing surfaces in a
continuous limit. Hence, within the biharmonic growth model, this transition
depends only on the system size and occurs approximately at a distance far from a central seed particle. The influence of biharmonic patterns on
the growth probability for each lattice site is also analysed.Comment: To appear in Phys. Rev. E. Copies upon request to
[email protected]
Proton-Antiproton Annihilation into a Lambda_c-Antilambda_c Pair
The process p-pbar -> Lambda_c-Antilambda_c is investigated within the
handbag approach. It is shown that the dominant dynamical mechanism,
characterized by the partonic subprocess u-ubar -> c-cbar factorizes in the
sense that only the subprocess contains highly virtual partons, a gluon to
lowest order of perturbative QCD, while the hadronic matrix elements embody
only soft scales and can be parameterized in terms of helicity flip and
non-flip generalized parton distributions. Modelling these parton distributions
by overlaps of light-cone wave functions for the involved baryons we are able
to predict cross sections and spin correlation parameters for the process of
interest.Comment: 39 pages, 7 figures, problems with printout of figures resolved, Ref.
33 and referring sentences in section 4 change
Condensate cosmology -- dark energy from dark matter
Imagine a scenario in which the dark energy forms via the condensation of
dark matter at some low redshift. The Compton wavelength therefore changes from
small to very large at the transition, unlike quintessence or metamorphosis. We
study CMB, large scale structure, supernova and radio galaxy constraints on
condensation by performing a 4 parameter likelihood analysis over the Hubble
constant and the three parameters associated with Q, the condensate field:
Omega_Q, w_f and z_t (energy density and equation of state today, and redshift
of transition). Condensation roughly interpolates between Lambda CDM (for large
z_t) and sCDM (low z_t) and provides a slightly better fit to the data than
Lambda CDM. We confirm that there is no degeneracy in the CMB between H and z_t
and discuss the implications of late-time transitions for the Lyman-alpha
forest. Finally we discuss the nonlinear phase of both condensation and
metamorphosis, which is much more interesting than in standard quintessence
models.Comment: 13 pages, 13 colour figures. Final version with discussion of TE
cross-correlation spectra for condensation and metamorphosis in light of the
WMAP result
Study of the radiative decay with CMD-2 detector
Using the of data collected with the CMD-2 detector at VEPP-2M
the decay mode , has been
studied. The obtained branching ratio is B(.Comment: 13 pages, 5 figures, LaTex2e, to be published in Phys. Lett.
Scale setting for alpha_s beyond leading order
We present a general procedure for incorporating higher-order information
into the scale-setting prescription of Brodsky, Lepage and Mackenzie. In
particular, we show how to apply this prescription when the leading coefficient
or coefficients in a series in the strong coupling alpha_s are anomalously
small and the original prescription can give an unphysical scale. We give a
general method for computing an optimum scale numerically, within dimensional
regularization, and in cases when the coefficients of a series are known. We
apply it to the heavy quark mass and energy renormalization in lattice NRQCD,
and to a variety of known series. Among the latter, we find significant
corrections to the scales for the ratio of e+e- to hadrons over muons, the
ratio of the quark pole to MSbar mass, the semi-leptonic B-meson decay width,
and the top decay width. Scales for the latter two decay widths, expressed in
terms of MSbar masses, increase by factors of five and thirteen, respectively,
substantially reducing the size of radiative corrections.Comment: 39 pages, 15 figures, 5 tables, LaTeX2
Calculations of binding energies and masses of heavy quarkonia using renormalon cancellation
We use various methods of Borel integration to calculate the binding ground
energies and masses of b-bbar and t-tbar quarkonia. The methods take into
account the leading infrared renormalon structure of the hard+soft part of the
binding energies E(s), and of the corresponding quark pole masses m_q, where
the contributions of these singularities in M(s) = 2 m_q + E(s) cancel.
Beforehand, we carry out the separation of the binding energy into its
hard+soft and ultrasoft parts. The resummation formalisms are applied to
expansions of m_q and E(s) in terms of quantities which do not involve
renormalon ambiguity, such as MSbar quark mass, and alpha_s. The
renormalization scales are different in calculations of m_q, E(s) and E(us).
The MSbar mass of b quark is extracted, and the binding energies of t-tbar and
the peak (resonance) energies for (t+tbar) production are obtained.Comment: 23 pages, 8 double figures, revtex4; the version to appear in
Phys.Rev.D; extended discussion between Eqs.(25) and (26); the paragraph
between Eqs.(32) and (33) is new and explains the numerical dependence of the
residue parameter on the factorization scale; several new references were
added; acknowledgments were modified; the numerical results are unchange
Low Energy Theory for 2 flavors at High Density QCD
We construct the effective Lagrangian describing the low energy excitations
for Quantum Chromodynamics with two flavors at high density. The non-linear
realization framework is employed to properly construct the low energy
effective theory. The light degrees of freedom, as required by 't Hooft anomaly
conditions, contain massless fermions which we properly include in the
effective Lagrangian. We also provide a discussion of the linearly realized
Lagrangian.Comment: 17 pages, RevTeX format, references added. To appear in Phys. Rev.
Electron Scattering From High-Momentum Neutrons in Deuterium
We report results from an experiment measuring the semi-inclusive reaction
where the proton is moving at a large angle relative to the
momentum transfer. If we assume that the proton was a spectator to the reaction
taking place on the neutron in deuterium, the initial state of that neutron can
be inferred. This method, known as spectator tagging, can be used to study
electron scattering from high-momentum (off-shell) neutrons in deuterium. The
data were taken with a 5.765 GeV electron beam on a deuterium target in
Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section
was extracted for different values of final-state missing mass ,
backward proton momentum and momentum transfer . The data
are compared to a simple PWIA spectator model. A strong enhancement in the data
observed at transverse kinematics is not reproduced by the PWIA model. This
enhancement can likely be associated with the contribution of final state
interactions (FSI) that were not incorporated into the model. A ``bound neutron
structure function'' was extracted as a function of and
the scaling variable at extreme backward kinematics, where effects of
FSI appear to be smaller. For MeV/c, where the neutron is far
off-shell, the model overestimates the value of in the region of
between 0.25 and 0.6. A modification of the bound neutron structure
function is one of possible effects that can cause the observed deviation.Comment: 33 pages RevTeX, 9 figures, to be submitted to Phys. Rev. C. Fixed 1
Referenc
Observation of exclusive DVCS in polarized electron beam asymmetry measurements
We report the first results of the beam spin asymmetry measured in the
reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry
with a sin(phi) modulation is observed, as predicted for the interference term
of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The
amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and
leading-twist pQCD, the alpha is directly proportional to the imaginary part of
the DVCS amplitude.Comment: 6 pages, 5 figure
- …