838 research outputs found

    Reconstruction of Black Hole Metric Perturbations from Weyl Curvature

    Get PDF
    Perturbation theory of rotating black holes is usually described in terms of Weyl scalars ψ4\psi_4 and ψ0\psi_0, which each satisfy Teukolsky's complex master wave equation and respectively represent outgoing and ingoing radiation. On the other hand metric perturbations of a Kerr hole can be described in terms of (Hertz-like) potentials Ψ\Psi in outgoing or ingoing {\it radiation gauges}. In this paper we relate these potentials to what one actually computes in perturbation theory, i.e ψ4\psi_4 and ψ0\psi_0. We explicitly construct these relations in the nonrotating limit, preparatory to devising a corresponding approach for building up the perturbed spacetime of a rotating black hole. We discuss the application of our procedure to second order perturbation theory and to the study of radiation reaction effects for a particle orbiting a massive black hole.Comment: 6 Pages, Revtex

    Kombucha Tea-associated microbes remodel host metabolic pathways to suppress lipid accumulation

    Get PDF
    The popularity of the ancient, probiotic-rich beverage Kombucha Tea (KT) has surged in part due to its purported health benefits, which include protection against metabolic diseases; however, these claims have not been rigorously tested and the mechanisms underlying host response to the probiotics in KT are unknown. Here, we establish a reproducible method to maintain C. elegans on a diet exclusively consisting of Kombucha Tea-associated microbes (KTM), which mirrors the microbial community found in the fermenting culture. KT microbes robustly colonize the gut of KTM-fed animals and confer normal development and fecundity. Intriguingly, animals consuming KTMs display a marked reduction in total lipid stores and lipid droplet size. We find that the reduced fat accumulation phenotype is not due to impaired nutrient absorption, but rather it is sustained by a programed metabolic response in the intestine of the host. KTM consumption triggers widespread transcriptional changes within core lipid metabolism pathways, including upregulation of a suite of lysosomal lipase genes that are induced during lipophagy. The elevated lysosomal lipase activity, coupled with a decrease in lipid droplet biogenesis, is partially required for the reduction in host lipid content. We propose that KTM consumption stimulates a fasting-like response in the C. elegans intestine by rewiring transcriptional programs to promote lipid utilization. Our results provide mechanistic insight into how the probiotics in Kombucha Tea reshape host metabolism and how this popular beverage may impact human metabolism

    Integrating Maternal Depression Screening Into an Early Intervention Program: An Implementation Evaluation

    Get PDF
    Background: In all 50 states, early intervention (EI) services to improve long-term child cognitive and academic outcomes are provided to infants and toddlers with suspected or diagnosed developmental delays. When mothers of EI-enrolled children experience depressive symptoms, uptake of EI services can be compromised. Aims: The purpose of the article is to present a depressive symptom screening intervention for mothers consisting of toolkit development for EI staff and families, symptom screening for mothers and follow-up protocol. To formally evaluate the implementation of the intervention, our research team followed the consolidated framework for implementation research (CFIR). Methods: Participants were 12 EI service coordinators across two offices. Focus groups and individual interviews were used to develop the toolkit and education module. Through the five CFIR domains, we evaluated the implemented intervention in order to allow other teams to learn from our experiences. Results: Our team successfully partnered with SCs to develop the intended deliverables. Still, the SCs found it challenging to conduct the screenings and reported mixed success. Conclusions: Preparation of EI SCs to integrate mental health screenings into their existing skillsets requires a high level of support from the research team, resulting in a rich understanding of the barriers-and potential rewards-for staff and families

    Hydrography and circulation near the crest of the East Pacific Rise between 9° and 10°N

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 58 (2011): 365-376, doi:10.1016/j.dsr.2011.01.009.Topography has a strong effect on the physical oceanography over the flanks and crests of the global mid-ocean ridge system. Here, we present an analysis of the hydrography and circulation near the crest of the East Pacific Rise (EPR) between 9◦ and 10◦N, which coincides with an integrated study site (ISS) of the RIDGE2000 program. The analysis is based primarily on survey and mooring data collected during the LADDER project, which aimed to investigate oceanographic and topographic influences on larval retention and dispersal in hydrothermal vent communities. Results indicate that the yearly averaged regional mean circulation is characterized by a westward drift of 0.5–1 cm·s−1 across the EPR axis and by north- and southward flows along the western and eastern upper ridge flanks, respectively. The westward drift is part of a basin-scale zonal flow that extends across most of the Pacific ocean near 10◦N, whereas the meridional currents near the ridge crest are a topographic effect. In spite of considerable mesoscale variability, which dominates the regional circulation and dispersal on weekly to monthly time scales, quasi-synoptic surveys carried out during the mooring deployment and recovery cruises indicate subinertial circulations that are qualitatively similar to the yearly averaged flow but associated with significantly stronger velocities. Weekly averaged mooring data indicate that the anticyclonically sheared along-flank flows are associated with core speeds as high as 10 cm·s−1 and extend ≈10 km off axis and 200m above the ridge-crest topography. Near the northern limit of the study region, the Lamont Seamount Chain rises from the western ridge flank and restricts along-EPR flow to five narrow passages, where peak velocities in excess of 20 cm·s−1 were observed. Outside the region of the ridge-crest boundary currents the density field over the EPR near 10◦N is characterized by isopycnals dipping into the ridge flanks. Directly above the EPR axis the ridge-crest boundary currents give rise to an isopycnal dome. During times of strong westward cross-EPR flow isopycnal uplift over the eastern flank causes the cross-ridge density field below the doming isopycnals to be asymmetric, with higher densities over the eastern than over the western flank. The data collected during the LADDER project indicate that dispersal of hydrothermal products from the EPR ISS on long time scales is predominantly to the west, whereas mesoscale variability dominates dispersal on weekly to monthly time scales, which are particularly important in the context of larval dispersal.Co-funding of the LADDER project by the biological and physical oceanography divisions of the National Science Foundation under grants OCE-0425361 and OCE-0424953 is gratefully acknowledged, as is support of J.W. Lavelle by NOAA’s Pacific Marine Environmental Laboratory and by the NOAA Vents Program

    Universal features of the order-parameter fluctuations : reversible and irreversible aggregation

    Full text link
    We discuss the universal scaling laws of order parameter fluctuations in any system in which the second-order critical behaviour can be identified. These scaling laws can be derived rigorously for equilibrium systems when combined with the finite-size scaling analysis. The relation between order parameter, criticality and scaling law of fluctuations has been established and the connexion between the scaling function and the critical exponents has been found. We give examples in out-of-equilibrium aggregation models such as the Smoluchowski kinetic equations, or of at-equilibrium Ising and percolation models.Comment: 19 pages, 10 figure

    Second order gauge invariant gravitational perturbations of a Kerr black hole

    Full text link
    We investigate higher than the first order gravitational perturbations in the Newman-Penrose formalism. Equations for the Weyl scalar ψ4,\psi_4, representing outgoing gravitational radiation, can be uncoupled into a single wave equation to any perturbative order. For second order perturbations about a Kerr black hole, we prove the existence of a first and second order gauge (coordinates) and tetrad invariant waveform, ψI\psi_I, by explicit construction. This waveform is formed by the second order piece of ψ4\psi_4 plus a term, quadratic in first order perturbations, chosen to make ψI\psi_I totally invariant and to have the appropriate behavior in an asymptotically flat gauge. ψI\psi_I fulfills a single wave equation of the form TψI=S,{\cal T}\psi_I=S, where T{\cal T} is the same wave operator as for first order perturbations and SS is a source term build up out of (known to this level) first order perturbations. We discuss the issues of imposition of initial data to this equation, computation of the energy and momentum radiated and wave extraction for direct comparison with full numerical approaches to solve Einstein equations.Comment: 19 pages, REVTEX. Some misprints corrected and changes to improve presentation. Version to appear in PR

    The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems

    Get PDF
    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer–Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer–Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens

    Pre-clinical evaluation of novel mucoadhesive bilayer patches for local delivery of clobetasol-17-propionate to the oral mucosa

    Get PDF
    Oral lichen planus (OLP) and recurrent aphthous stomatitis (RAS) are chronic inflammatory conditions often characterised by erosive and/or painful oral lesions that have a considerable impact on quality of life. Current treatment often necessitates the use of steroids in the form of mouthwashes, creams or ointments, but these are often ineffective due to inadequate drug contact times with the lesion. Here we evaluate the performance of novel mucoadhesive patches for targeted drug delivery. Electrospun polymeric mucoadhesive patches were produced and characterised for their physical properties and cytotoxicity before evaluation of residence time and acceptability in a human feasibility study. Clobetasol-17-propionate incorporated into the patches was released in a sustained manner in both tissue-engineered oral mucosa and ex vivo porcine mucosa. Clobetasol-17 propionate-loaded patches were further evaluated for residence time and drug release in an in vivo animal model and demonstrated prolonged adhesion and drug release at therapeutic-relevant doses and time points. These data show that electrospun patches are adherent to mucosal tissue without causing tissue damage, and can be successfully loaded with and release clinically active drugs. These patches hold great promise for the treatment of oral conditions such as OLP and RAS, and potentially many other oral lesions

    Confining QCD Strings, Casimir Scaling, and a Euclidean Approach to High-Energy Scattering

    Get PDF
    We compute the chromo-field distributions of static color-dipoles in the fundamental and adjoint representation of SU(Nc) in the loop-loop correlation model and find Casimir scaling in agreement with recent lattice results. Our model combines perturbative gluon exchange with the non-perturbative stochastic vacuum model which leads to confinement of the color-charges in the dipole via a string of color-fields. We compute the energy stored in the confining string and use low-energy theorems to show consistency with the static quark-antiquark potential. We generalize Meggiolaro's analytic continuation from parton-parton to gauge-invariant dipole-dipole scattering and obtain a Euclidean approach to high-energy scattering that allows us in principle to calculate S-matrix elements directly in lattice simulations of QCD. We apply this approach and compute the S-matrix element for high-energy dipole-dipole scattering with the presented Euclidean loop-loop correlation model. The result confirms the analytic continuation of the gluon field strength correlator used in all earlier applications of the stochastic vacuum model to high-energy scattering.Comment: 65 pages, 13 figures, extended and revised version to be published in Phys. Rev. D (results unchanged, 2 new figures, 1 new table, additional discussions in Sec.2.3 and Sec.5, new appendix on the non-Abelian Stokes theorem, old Appendix A -> Sec.3, several references added

    Machine Learning in Automated Text Categorization

    Full text link
    The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert manpower, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely document representation, classifier construction, and classifier evaluation.Comment: Accepted for publication on ACM Computing Survey
    • …
    corecore