437 research outputs found

    Expression of soluble, active, fluorescently tagged hephaestin in COS and CHO cell lines

    Get PDF
    Hephaestin (Hp) is a trans-membrane protein, which plays a critical role in intestinal iron absorption. Hp was originally identified as the gene responsible for the phenotype of sex-linked anaemia in the sla mouse. The mutation in the sla protein causes ac-cumulation of dietary iron in duodenal cells, causing severe microcytic hypochromic anaemia. Although mucosal uptake of dietary iron is normal, export from the duodenum is inhibited. Hp is homologous to ceruloplasmin (Cp), a member of the family of multi copper fer-roxidases (MCFs) and possesses ferroxidase activity that facilitates iron release from the duodenum and load onto the serum iron trans-port protein transferrin. In the present study, attempts were made to produce biologically active recombinant mouse hephaestin as a secretory form tagged with green fluorescent protein (GFP), Hpsec-GFP. Plasmid expressing Hpsec-GFP was constructed and transfected into COS and CHO cells. The GFP aided the monitoring expression in real time to select the best conditions to maximise expression and provided a tag for purifying and analysing Hpsec-GFP. The protein had detectable oxidase activity as shown by in-gel and solution-based assays. The methods described here can provide the basis for further work to probe the interaction of hephaestin with other proteins using complementary fluorescent tags on target proteins that would facilitate the fluorescence resonance energy transfer measurements, for example with transferrin or colocalisation studies, and help to discover more about hephaestin works at the molecular level.</jats:p

    Standardisation of labial salivary gland histopathology in clinical trials in primary Sjögren's syndrome

    Get PDF
    Labial salivary gland (LSG) biopsy is used in the classification of primary Sjögren's syndrome (PSS) and in patient stratification in clinical trials. It may also function as a biomarker. The acquisition of tissue and histological interpretation is variable and needs to be standardised for use in clinical trials. A modified European League Against Rheumatism consensus guideline development strategy was used. The steering committee of the ad hoc working group identified key outstanding points of variability in LSG acquisition and analysis. A 2-day workshop was held to develop consensus where possible and identify points where further discussion/data was needed. These points were reviewed by a subgroup of experts on PSS histopathology and then circulated via an online survey to 50 stakeholder experts consisting of rheumatologists, histopathologists and oral medicine specialists, to assess level of agreement (0–10 scale) and comments. Criteria for agreement were a mean score ≥6/10 and 75% of respondents scoring ≥6/10. Thirty-nine (78%) experts responded and 16 points met criteria for agreement. These points are focused on tissue requirements, identification of the characteristic focal lymphocytic sialadenitis, calculation of the focus score, identification of germinal centres, assessment of the area of leucocyte infiltration, reporting standards and use of prestudy samples for clinical trials. We provide standardised consensus guidance for the use of labial salivary gland histopathology in the classification of PSS and in clinical trials and identify areas where further research is required to achieve evidence-based consensus

    Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting

    Get PDF
    Cell-based therapy exploits modified human cells to treat diseases but its targeted application in specific tissues, particularly those lying deep in the body where direct injection is not possible, has been problematic. Here we use a magnetic resonance imaging (MRI) system to direct macrophages carrying an oncolytic virus, Seprehvir, into primary and metastatic tumour sites in mice. To achieve this, we magnetically label macrophages with super-paramagnetic iron oxide nanoparticles and apply pulsed magnetic field gradients in the direction of the tumour sites. Magnetic resonance targeting guides macrophages from the bloodstream into tumours, resulting in increased tumour macrophage infiltration and reduction in tumour burden and metastasis. Our study indicates that clinical MRI scanners can not only track the location of magnetically labelled cells but also have the potential to steer them into one or more target tissues

    Multiple molecular mechanisms form a positive feedback loop driving amyloid β42 peptide-induced neurotoxicity via activation of the TRPM2 channel in hippocampal neurons

    Get PDF
    Emerging evidence supports an important role for the ROS-sensitive TRPM2 channel in mediating age-related cognitive impairment in Alzheimer’s disease (AD), particularly neurotoxicity resulting from generation of excessive neurotoxic Aβ peptides. Here we examined the elusive mechanisms by which Aβ₄₂ activates the TRPM2 channel to induce neurotoxicity in mouse hippocampal neurons. Aβ₄₂-induced neurotoxicity was ablated by genetic knockout (TRPM2-KO) and attenuated by inhibition of the TRPM2 channel activity or activation through PARP-1. Aβ₄₂-induced neurotoxicity was also inhibited by treatment with TPEN used as a Zn²⁺-specific chelator. Cell imaging revealed that Aβ₄₂-induced lysosomal dysfunction, cytosolic Zn²⁺ increase, mitochondrial Zn²⁺ accumulation, loss of mitochondrial function, and mitochondrial generation of ROS. These effects were suppressed by TRPM2-KO, inhibition of TRPM2 or PARP-1, or treatment with TPEN. Bafilomycin-induced lysosomal dysfunction also resulted in TRPM2-dependent cytosolic Zn²⁺ increase, mitochondrial Zn²⁺ accumulation, and mitochondrial generation of ROS, supporting that lysosomal dysfunction and accompanying Zn²⁺ release trigger mitochondrial Zn²⁺ accumulation and generation of ROS. Aβ₄₂-induced effects on lysosomal and mitochondrial functions besides neurotoxicity were also suppressed by inhibition of PKC and NOX. Furthermore, Aβ₄₂-induced neurotoxicity was prevented by inhibition of MEK/ERK. Therefore, our study reveals multiple molecular mechanisms, including PKC/NOX-mediated generation of ROS, activation of MEK/ERK and PARP-1, lysosomal dysfunction and Zn²⁺ release, mitochondrial Zn²⁺ accumulation, loss of mitochondrial function, and mitochondrial generation of ROS, are critically engaged in forming a positive feedback loop that drives Aβ₄₂-induced activation of the TRPM2 channel and neurotoxicity in hippocampal neurons. These findings shed novel and mechanistic insights into AD pathogenesis

    Phenytoin versus Leviteracetam for seizure prophylaxis after brain injury - A meta analysis

    Get PDF
    Background: Current standard therapy for seizure prophylaxis in Neuro-surgical patients involves the use of Phenytoin (PHY). However, a new drug Levetiracetam (LEV) is emerging as an alternate treatment choice. We aimed to conduct a meta-analysis to compare these two drugs in patients with brain injury.Methods: An electronic search was performed in using Pubmed, Embase, and CENTRAL. We included studies that compared the use of LEV vs. PHY for seizure prophylaxis for brain injured patients (Traumatic brain injury, intracranial hemorrhage, intracranial neoplasms, and craniotomy). Data of all eligible studies was extracted on to a standardized abstraction sheet. Data about baseline population characteristics, type of intervention, study design and outcome was extracted. Our primary outcome was seizures.Results: The literature search identified 2489 unduplicated papers. Of these 2456 papers were excluded by reading the abstracts and titles. Another 25 papers were excluded after reading their complete text. We selected 8 papers which comprised of 2 RCTs and 6 observational studies. The pooled estimate\u27s Odds Ratio 1.12 (95% CI = 0.34, 3.64) demonstrated no superiority of either drug at preventing the occurrence of early seizures. In a subset analysis of studies in which follow up for seizures lasted either 3 or 7 days, the effect estimate remained insignificant with an odds ratio of 0.96 (95% CI = 0.34, 2.76). Similarly, 2 trials reporting seizure incidence at 6 months also had insignificant pooled results while comparing drug efficacy. The pooled odds ratio was 0.96 (95% CI = 0.24, 3.79).Conclusions: Levetiracetam and Phenytoin demonstrate equal efficacy in seizure prevention after brain injury. However, very few randomized controlled trials (RCTs) on the subject were found. Further evidence through a high quality RCT is highly recommended

    TRPM2-mediated rise in mitochondrial Zn2+ promotes palmitate-induced mitochondrial fission and pancreatic β-cell death in rodents

    No full text
    Rise in plasma free fatty acids (FFAs) represents a major risk factor for obesity-induced type 2 diabetes. Saturated FFAs cause a progressive decline in insulin secretion by promoting pancreatic β-cell death through increased production of reactive oxygen species (ROS). Recent studies have demonstrated that palmitate (a C16-FFA)-induced rise in ROS causes β-cell death by triggering mitochondrial fragmentation, but the underlying mechanisms are unclear. Using the INS1-832/13 β-cell line, here we demonstrate that palmitate generates the ROS required for mitochondrial fission by activating NOX (NADPH oxidase)-2. More importantly, we show that chemical inhibition, RNAi-mediated silencing and knockout of ROS-sensitive TRPM (transient receptor potential melastatin)-2 channels prevent palmitate-induced mitochondrial fission. Although TRPM2 activation affects the intracellular dynamics of Ca2+ and Zn2+, chelation of Zn2+ alone was sufficient to prevent mitochondrial fission. Consistent with the role of Zn2+, palmitate caused a rise in mitochondrial Zn2+, leading to Zn2+-dependent mitochondrial recruitment of Drp-1 (a protein that catalyses mitochondrial fission) and loss of mitochondrial membrane potential. In agreement with the previous reports, Ca2+ caused Drp-1 recruitment, but it failed to induce mitochondrial fission in the absence of Zn2+. These results indicate a novel role for Zn2+ in mitochondrial dynamics. Inhibition or knockout of TRPM2 channels in mouse islets and RNAi-mediated silencing of TRPM2 expression in human islets prevented FFA/cytokine-induced β-cell death, findings that are consistent with the role of abnormal mitochondrial fission in cell death. To conclude, our results reveal a novel, potentially druggable signalling pathway for FFA-induced β-cell death. The cascade involves NOX-2-dependent production of ROS, activation of TRPM2 channels, rise in mitochondrial Zn2+, Drp-1 recruitment and abnormal mitochondrial fission

    Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity

    Get PDF
    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli

    Effect of sodium hydroxide on mechanical characteristics of kenaf fibers reinforced concrete

    Get PDF
    This article shows the experimental analysis of sodium hydroxide (NaOH) effects on the mechanical properties upon the addition of kenaf fibres to the concrete mixture. The compression and flexural tests were carried out on seven different concrete mixtures for 28 days to evaluate the mechanical characteristics. Hence, the experimental trials comprise of seven different mixtures of concrete; the control (without the addition of kenaf fibre) was represented as the first mixture. The following six concrete mixtures contain different kenaf fibre volume fractions (1% and 2%); they were treated with 1%, 3% and 6% of sodium hydroxide concentrations in order to investigate their performances. The experimental results show that the compressive and flexural strengths of kenaf fibres reinforced concrete increase as sodium hydroxide concentration increases. Besides, it is worth noting that the addition of kenaf fibres has an insignificant effect on the compressive strength of the concrete owing to the reduction in concrete density. Therefore, the results of this study demonstrated that the concrete flexural strength increased to up to 12%) upon the addition of 1% kenaf fibre associated with 6% NaOH. Moreover, the failure state increasingly changed to ductile from brittle
    corecore