1,807 research outputs found

    Clinical Camel: An Open Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding

    Full text link
    We present Clinical Camel, an open large language model (LLM) explicitly tailored for clinical research. Fine-tuned from LLaMA-2 using QLoRA, Clinical Camel achieves state-of-the-art performance across medical benchmarks among openly available medical LLMs. Leveraging efficient single-GPU training, Clinical Camel surpasses GPT-3.5 in five-shot evaluations on all assessed benchmarks, including 64.3% on the USMLE Sample Exam (compared to 58.5% for GPT-3.5), 77.9% on PubMedQA (compared to 60.2%), 60.7% on MedQA (compared to 53.6%), and 54.2% on MedMCQA (compared to 51.0%). In addition to these benchmarks, Clinical Camel demonstrates its broader capabilities, such as synthesizing plausible clinical notes. This work introduces dialogue-based knowledge encoding, a novel method to synthesize conversational data from dense medical texts. While benchmark results are encouraging, extensive and rigorous human evaluation across diverse clinical scenarios is imperative to ascertain safety before implementation. By openly sharing Clinical Camel, we hope to foster transparent and collaborative research, working towards the safe integration of LLMs within the healthcare domain. Significant challenges concerning reliability, bias, and the potential for outdated knowledge persist. Nonetheless, the transparency provided by an open approach reinforces the scientific rigor essential for future clinical applications.Comment: for model weights, see https://huggingface.co/wanglab

    The importance of early arthroscopy in athletes with painful cartilage lesions of the ankle: a prospective study of 61 consecutive cases

    Get PDF
    BACKGROUND Ankle sprains are common in sports and can sometimes result in a persistent pain condition. PURPOSE Primarily to evaluate clinical symptoms, signs, diagnostics and outcomes of surgery for symptomatic chondral injuries of the talo crural joint in athletes. Secondly, in applicable cases, to evaluate the accuracy of MRI in detecting these injuries. Type of study: Prospective consecutive series. METHODS Over around 4 years we studied 61 consecutive athletes with symptomatic chondral lesions to the talocrural joint causing persistent exertion ankle pain. RESULTS 43% were professional full time athletes and 67% were semi-professional, elite or amateur athletes, main sports being soccer (49%) and rugby (14%). The main subjective complaint was exertion ankle pain (93%). Effusion (75%) and joint line tenderness on palpation (92%) were the most common clinical findings. The duration from injury to arthroscopy for 58/61 cases was 7 months (5.7–7.9). 3/61 cases were referred within 3 weeks from injury. There were in total 75 cartilage lesions. Of these, 52 were located on the Talus dome, 17 on the medial malleolus and 6 on the Tibia plafond. Of the Talus dome injuries 18 were anteromedial, 14 anterolateral, 9 posteromedial, 3 posterolateral and 8 affecting mid talus. 50% were grade 4 lesions, 13.3% grade 3, 16.7% grade 2 and 20% grade 1. MRI had been performed pre operatively in 26/61 (39%) and 59% of these had been interpreted as normal. Detection rate of cartilage lesions was only 19%, but subchondral oedema was present in 55%. At clinical follow up average 24 months after surgery (10–48 months), 73% were playing at pre-injury level. The average return to that level of sports after surgery was 16 weeks (3–32 weeks). However 43% still suffered minor symptoms. CONCLUSION Arthroscopy should be considered early when an athlete presents with exertion ankle pain, effusion and joint line tenderness on palpation after a previous sprain. Conventional MRI is not reliable for detecting isolated cartilage lesions, but the presence of subchondral oedema should raise such suspicion

    Temperature variations from Hubble Space Telescope imagery and spectroscopy of NGC 7009

    Get PDF
    We present new Hubble Space Telescope (HST)/WFPC2 imagery and STIS long-slit spectroscopy of the planetary nebula NGC 7009. The primary goal was to obtain high spatial resolution of the intrinsic line ratio [O III] 4364/5008 and thereby evaluate the electron temperature (Te) and the fractional mean-square Te variation (tA2)across the nebula. The WFPC2 Te map is rather uniform; almost all values are between 9000–11 000 K, with the higher Te values closely coinciding with the inner He++ zone. The results indicate very small values–≲0.01– for tA2 throughout. Our STIS data allow an even more direct determination of Te and tA2, albeit for a much smaller area than with WFPC2. We present results from binning the data along the slit into tiles that are 0.5-arcsec square (matching the slit width). The average [O III] temperature using 45 tiles (excluding the central star and STIS fiducial bars) is 10 139 K; tA2 is 0.0035. The measurements of Te reported here are an average along each line of sight. Therefore, despite finding remarkably low tA2, we cannot completely rule out temperature fluctuations along the line of sight as the cause of the large abundance discrepancy between heavy element abundances inferred from collisionally excited emission lines compared to those derived from recombination lines

    Electroweak corrections to W-boson pair production at the LHC

    Get PDF
    Vector-boson pair production ranks among the most important Standard-Model benchmark processes at the LHC, not only in view of on-going Higgs analyses. These processes may also help to gain a deeper understanding of the electroweak interaction in general, and to test the validity of the Standard Model at highest energies. In this work, the first calculation of the full one-loop electroweak corrections to on-shell W-boson pair production at hadron colliders is presented. We discuss the impact of the corrections on the total cross section as well as on relevant differential distributions. We observe that corrections due to photon-induced channels can be amazingly large at energies accessible at the LHC, while radiation of additional massive vector bosons does not influence the results significantly.Comment: 29 pages, 15 figures, 4 tables; some references and comments on \gamma\gamma -> WW added; matches version published in JHE

    High-Frequency, Low-Magnitude Vibration Does Not Prevent Bone Loss Resulting from Muscle Disuse in Mice following Botulinum Toxin Injection

    Get PDF
    High-frequency, low-magnitude vibration enhances bone formation ostensibly by mimicking normal postural muscle activity. We tested this hypothesis by examining whether daily exposure to low-magnitude vibration (VIB) would maintain bone in a muscle disuse model with botulinum toxin type A (BTX). Female 16–18 wk old BALB/c mice (Nβ€Š=β€Š36) were assigned to BTX-VIB, BTX-SHAM, VIB, or SHAM. BTX mice were injected with BTX (20 Β΅L; 1 U/100 g body mass) into the left hindlimb posterior musculature. All mice were anaesthetized for 20 min/d, 5 d/wk, for 3 wk, and the left leg mounted to a holder. Through the holder, VIB mice received 45 Hz, Β±0.6 g sinusoidal acceleration without weight bearing. SHAM mice received no vibration. At baseline and 3 wk, muscle cross-sectional area (MCSA) and tibial bone properties (epiphysis, metaphysis and diaphysis) were assessed by in vivo micro-CT. Bone volume fraction in the metaphysis decreased 12Β±9% and 7Β±6% in BTX-VIB and BTX-SHAM, but increased in the VIB and SHAM. There were no differences in dynamic histomorphometry outcomes between BTX-VIB and BTX nor between VIB and SHAM. Thus, vibration did not prevent bone loss induced by a rapid decline in muscle activity nor produce an anabolic effect in normal mice. The daily loading duration was shorter than would be expected from postural muscle activity, and may have been insufficient to prevent bone loss. Based on the approach used in this study, vibration does not prevent bone loss in the absence of muscle activity induced by BTX

    Minimum information and guidelines for reporting a Multiplexed Assay of Variant Effect

    Full text link
    Multiplexed Assays of Variant Effect (MAVEs) have emerged as a powerful approach for interrogating thousands of genetic variants in a single experiment. The flexibility and widespread adoption of these techniques across diverse disciplines has led to a heterogeneous mix of data formats and descriptions, which complicates the downstream use of the resulting datasets. To address these issues and promote reproducibility and reuse of MAVE data, we define a set of minimum information standards for MAVE data and metadata and outline a controlled vocabulary aligned with established biomedical ontologies for describing these experimental designs

    Qualitatively and quantitatively similar effects of active and passive maternal tobacco smoke exposure on in utero mutagenesis at the HPRT locus

    Get PDF
    BACKGROUND: Induced mutagenesis in utero is likely to have life-long repercussions for the exposed fetus, affecting survival, birth weight and susceptibility to both childhood and adult-onset diseases, such as cancer. In the general population, such exposures are likely to be a consequence of the lifestyle choices of the parents, with exposure to tobacco smoke one of the most pervasive and easily documented. Previous studies attempting to establish a direct link between active smoking and levels of somatic mutation have largely discounted the effects of passive or secondary exposure, and have produced contradictory results. METHODS: Data from three studies of possible smoking effects on in utero mutagenesis at the HPRT locus were compiled and reanalyzed, alone and in combination. Where possible, passive exposure to environmental tobacco smoke was considered as a separate category of exposure, rather than being included in the non-smoking controls. Molecular spectra from these studies were reanalyzed after adjustment for reported mutation frequencies from the individual studies and the entire data set. RESULTS: A series of related studies on mutation at the X-linked HPRT locus in human newborn cord blood samples has led to the novel conclusion that only passive maternal exposure to tobacco mutagens has a significant effect on the developing baby. We performed a pooled analysis of the complete data from these studies, at the levels of both induced mutation frequency and the resulting mutational spectrum. CONCLUSION: Our analysis reveals a more commonsensical, yet no less cautionary result: both active maternal smoking and secondary maternal exposure produce quantitatively and qualitatively indistinguishable increases in fetal HPRT mutation. Further, it appears that this effect is not perceptibly ameliorated if the mother adjusts her behavior (i.e. stops smoking) when pregnancy is confirmed, although this conclusion may also be affected by continued passive exposure

    A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    Get PDF
    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol

    In vivo axial loading of the mouse tibia

    Get PDF
    Noninvasive methods to apply controlled, cyclic loads to the living skeleton are used as anabolic procedures to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days
    • …
    corecore